三九宝宝网宝宝教育计划总结

数学二次函数总结

03月11日 编辑 39baobao.com

[初二上期数学的一次函数总结]一次函数(初中部分) 一般表达式:Y=KX+b 纯数学中的取值范围:一切实数;Y的范围:一切实数 图像:一条直线 图像特点:过点(0,b);K0时,Y随X增大而增大 求表达式:找出图像上任意两点,列出二元一...+阅读

二次函数的图象与性质

二次函数 开口方向 对称轴 顶点 增减性 最大(小)值

y = ax2 a>0时,开口向上;a<0抛时,开口向下。

x=0 (0,0) 当a>0时,在对称轴左侧,y随x的增大而减小,在对称轴右侧,y随x的增大而增大;

当a<0时,在对称轴左侧,y随x的增大而增大,在对称轴右侧,y随x的增大而减小。 当a>0时,当x=0时,=0;

当a<0时,当x=0时,=0;

y = ax2+c x=0 (0,c) 当a>0时,当x=0时,=c;

当a<0时,当x=0时,=c;

y = a(x-h)2 x=h (h,0) 当a>0时,当x=h时,y最小=0;

当a<0时,当x=h时,y最大=0;

y = a(x-h)2 +k x=h (h,k) 当a>0时,当x=h时,y最小=k;

当a<0时,当x=h时,y最大=k;

y = ax2+bx+c x= (,) 当a>0时,当x=h时,y最小=k;

当a<0时,当x=h时,y最大=k;

其中h=,k=

★二次函数y = ax2 、y = ax2+c、y = a(x-h)2 以及y = a(x-h)2 +k的形状相同,只是位置不同,相互之间可以通过平移得到,一般式y = ax2+bx+c可以通过配方化成y = a(x-h)2 +k的形式。

3.二次函数的解析式

二次函数解析式常见有三种形式:

①一般式:y = ax2+bx+c(a、b、c是常数,且a≠0)

②顶点式:y = a(x-h)2 +k(a、h、k是常数,且a≠0)

③交点式:y=a(x-x1)( x-x2)(a、x1、x2是常数,且a≠0,x1、x2是抛物线与x轴交点的横坐标)。

★抛物线y = ax2 的开口大小由∣a∣决定:∣a∣越大,开口越小;∣a∣越小,开口越大。

二次函数小结

(一)知道二次函数的意义;

(二)会画y=x2,y=ax2的图象,并了解a的变化图形的影响;

(三)会根据已知条件用待定系数法求出函数式y=ax2;

(四)掌握抛物线y=ax2图象的性质;

(五)加深对于数形结合思想认识. 重点:知识二次函数的意义;会求二次函数式y=ax2;会画y=ax2的图象. 难点:描点法画二次函数y=ax2的图象,数与形相互联系.

(一)复习 1.一次函数式的一般形式是什么?(y=kx+b(k≠0,k是常数)) 2.一次函数中的“次”字是指什么?(函数中自变量的指数) 总结二次函数的难点问题】对于二次函数,动区间定轴或定区间动轴的,(以开口 向上的为例) 【总结二次函数的难点问题】对于二次函数,动区间定轴或定区间动轴的,(以开口 向上的为例)3类问题: ① 求最大值,分2类讨论,讨论的标准是以给定区间[a,b]的中点(a+b) 2为1个临界点分2个区间讨论; ②求最小值,分3类讨论,讨论的标准是以给定区间[a,b]的两个端点为2个临 界点分3个区间讨论; ③求值域,分4类讨论, 讨论的标准是以给定区间[a,b]和区间[a,b]的中点( a+b)2的三个端点为3个临界点分4个区间讨论; 【注意】a、注意题中给出的函数的定义域或者参数的取值范围。

b、开口向下的可以自己推导。 c、该办法可以应用函数的思想解决一些恒成立的问题。 1.描点画二次函数y=ax2的图象应注意:列表时应以O为中心,均匀选取一些便于计算且有代表性的x的值.开始选值时带有一定的试探性.描点后注意点与点之间的变化趋势,然后用平滑的曲线按自变量由小到大(或由大到小)的顺序平滑地连接起来. 2.抛物线的开口大小问题: |a|越大,抛物线的开口越小;|a|越小,抛物线的开口越大. 3.抛物线y=ax2的特征:

(1)对称轴是y轴,也就是直线x=0,顶点是原点(0,0). (2)a>0时,抛物线开口向上,并向上无限延伸,在y轴右侧(x>0时),y随x的增大而增大,在y轴左侧(x0时),y随x增大而减小;在y轴左侧(x

对二次函数的相关知识的总结

二次函数 定义与定义表达式编辑本段 一般地,自变量x和因变量y之间存在如下关系: y=ax2+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数。 重要概念:(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a0时,抛物线开口向上;当a |a|越大,则抛物线的开口越小。 4.一次项系数b和二次项系数a共同决定对称轴的位置。 当a与b同号时(即ab>0),对称轴在y轴左侧; 因为若对称轴在左边则对称轴小于0,也就是-b/2a0时,抛物线与x轴有2个交点。

Δ= b2-4ac=0时,抛物线与x轴有1个交点。 Δ= b2-4ac 当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b2/4a;在{x|x-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b2/4a}相反不变 当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax2+c(a≠0) 7.定义域:R 值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b2)/4a,+∞);②[t,+∞) 奇偶性:偶函数 周期性:无 解析式: ①y=ax2+bx+c[一般式] ⑴a≠0 ⑵a>0,则抛物线开口朝上;a ⑶极值点:(-b/2a,(4ac-b2)/4a); ⑷Δ=b2-4ac, Δ>0,图象与x轴交于两点: ([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0); Δ=0,图象与x轴交于一点: (-b/2a,0); Δ ②y=a(x-h)2+t[配方式] 此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b2)/4a; 二次函数与一元二次方程编辑本段 特别地,二次函数(以下称函数)y=ax2+bx+c, 当y=0时,二次函数为关于x的一元二次方程(以下称方程), 即ax2+bx+c=0 此时,函数图像与x轴有无交点即方程有无实数根。

函数与x轴交点的横坐标即为方程的根。 1.二次函数y=ax2,y=a(x-h)2,y=a(x-h)2 +k,y=ax2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表: 解析式 y=ax2 y=ax2+K y=a(x-h)2 y=a(x-h)2+k y=ax2+bx+c 顶点坐标 (0,0) (0,K) (h,0) (h,k) (-b/2a,[4ac-b2]/4a) 对 称 轴 x=0 x=0 x=h x=h x=-b/2a 当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到, 当h0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象; 当h>0,k

求二次函数一章知识总结望具体一些谢谢!

二次函数 I.定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系: y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a0时,抛物线向上开口;当a|a|越大,则抛物线的开口越小。 4.一次项系数b和二次项系数a共同决定对称轴的位置。 当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab5.常数项c决定抛物线与y轴交点。 抛物线与y轴交于(0,c) 6.抛物线与x轴交点个数 Δ= b^2-4ac>0时,抛物线与x轴有2个交点。 Δ= b^2-4ac=0时,抛物线与x轴有1个交点。 Δ= b^2-4acV.二次函数与一元二次方程 特别地,二次函数(以下称函数)y=ax^2;+bx+c, 当y=0时,二次函数为关于x的一元二次方程(以下称方程), 即ax^2;+bx+c=0 此时,函数图像与x轴有无交点即方程有无实数根。 函数与x轴交点的横坐标即为方程的根。 答案补充 画抛物线y=ax2时,应先列表,再描点,最后连线。列表选取自变量x值时常以0为中心,选取便于计算、描点的整数值,描点连线时一定要用光滑曲线连接,并注意变化趋势。 二次函数解析式的几种形式

(1)一般式:y=ax2+bx+c (a,b,c为常数,a≠0). (2)顶点式:y=a(x-h)2+k(a,h,k为常数,a≠0). (3)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0. 说明:

(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点 补充 如果图像经过原点,并且对称轴是y轴,则设y=ax^2;如果对称轴是y轴,但不过原点,则设y=ax^2+k定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系: y=ax^2+bx+c (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a

以下为关联文档:

怎样全面归纳二次函数的性质1.抛物线是轴对称图形。对称轴为直线x = -b/2a。 对称轴与抛物线唯一的交点为抛物线的顶点P。 特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 2.抛物线有一个顶点P,坐标为P ( -...

二次函数图像有哪些性质a: a分为两部分:符号和大小(即绝对值) 符号:正号说明开口向上,负号说明开口向下 大小:a的绝对值越大,抛物线开口越小(瘦).a的绝对值越小,抛物线开口越大(胖). b: b不能单独判断,要与a结合...

二次函数图像和性质 对称轴x=h顶点坐标(x,h)(两个都是) A>0 左边 Y随X的增大而减小 右边Y随X的增大而增大 x=h时有最小值 A左边 Y随X的增大而增大 右边Y随X的增大而减小 x=h时有最大值 不知道你看...

指数函数与对数函数的总结性质高考数学基础知识汇总第一部分 集合 (1)含n个元素的集合的子集数为2^n,真子集数为2^n-1;非空真子集的数为2^n-2;(2) 注意:讨论的时候不要遗忘了 的情况。 (3) 第二部分 函数与导数1...

高中数学三角函数和空间几何大题易错点总结点一.集合与函数 1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解. 2.在应用条件时,易A忽略是空集的情况 3.你会用补集的思想解...

高中求函数定义域值域单调性奇偶性的好方法数学高手帮忙总结一下1定义域的求法。 (1)若ƒ(x)是整式,则定义域为R 。 (2)若ƒ(x)是分式,则定义域为使分母不为零的全体实数。 (3)若ƒ(x)是偶次根式,则定义域为使被开方数为非负数的全体实数。 (4)若ƒ...

初一第二次月考总结300字初一第二次月考总结300字,第二次月考考前感想500只:最近进行了一次月考,在公布成绩的时候,我的心情是非常的忐忑,我很想知道值这次的成绩到底是不是我理想中的成绩,但是当我看到成...

高一数学基础知识总结必修一的我觉得函数好难高一数学基础知识总结必修一的我觉得函数好难,美术常识知识总结:(一)、映射、函数、反函数 1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特...

二次函数的总结有什么呢二次函数的总结有什么呢,谁来教教我二次函数啊:^_^。我给你说个吧二次函数 要掌握二次函数的图象和性质,有单调性,对称轴,顶点,二次函数的最值讨论方法,二次方程根的分布的讨论方法...

推荐阅读
图文推荐