三九宝宝网宝宝教育学龄段教育

小学数学一题多解系列几何计算题

09月21日 编辑 39baobao.com

[让学生直观、简单的学会一节课的知识《小学数学教育》]每次阅读小学数学教育杂志,我都会有新的收获。最近我在研究小学数学中如何合理利用主教材中的主题图。我查了很多的资料,我觉得《小学数学教育》上,写的特别好给了我很多的灵感...+阅读

例116 有两个完全相同的长方体恰好拼成了一个正方体,正方体的表面积是30平方厘米.如果把这两个长方体改拼成一个大长方体,那么大长方体的表面积是多少?

(北京市西城区)

【分析1】因为正方体有6个相等的面,所以每个面的面积是30÷6=5平方厘米.拼成一个大长方体要减少一个面的面积,同时增加两个面的面积.由此可求大长方体的表面积.

【解法1】30-30÷6+30÷6×2

=30-5+10=35(平方厘米).

或: 30+30÷6×(2-1)

=30+5=35(平方厘米).

【分析2】因为拼成大长方体后,表面积先减少一个面的面积,同时又增加两个面的面积,实际上增加了一个面的面积.

【解法2】 30+30÷6=30+5=35(平方厘米).

【分析3】把原来正方体的表面积看作“1”.先求出增加的一个面是原来正方体表面积的几分之几,再运用分数乘法应用题的解法求大长方体的表面积.

【分析4】因为原来正方体的表面积是6个小正方形面积的和,拼成大长方体的表面积是7个小正方形面积的和,所以可先求每个小正方形的面积,再求7个小正方形的面积.

【解法4】30÷6×(6+1)

=30÷6×7=35(平方厘米).

答:大长方体的表面积是35平方厘米.

【评注】比较以上四种解法,解法2和解法3是本题较好的解法.

例117 大正方体棱长是小正方体棱长的2倍,大正方体体积比小正方体的体积多21立方分米,小正方体的体积是多少?

(北京市东城区)

【分析1】把小正方体的体积看作“1倍”,那么大正方体的体积是小正方体的2×2×2=8(倍),比小正方体多8-1=7(倍).由此本题可解.

【解法1】21÷(2×2×2-1)

=21÷7=3(立方分米).

【分析2】把小正方体的棱长看作“ 1”,那么大正方体棱长就是2.

【分析3】先求出大、小正方体的体积比,再求21立方分米的对应份数,最后求出每份的体积即小正方体的体积.

【解法3】大、小正方体的体积比?

(2×2×2)∶(1×1×1)=8∶1

小正方体的体积是多少立方分米?

21÷(8-1)=3(立方分米)

答:小正方体的体积是3立方分米.

【评注】解法1的思路简单,运算简便.

例118 一个圆锥形麦堆,底面周长是25.12米,高是3米.把这些小麦装入一个底面直径是4米的圆柱形粮囤内正好装满,这个圆柱形粮囤的高是多少米?(天津市和平区)

【分析1】由题意可知,麦堆的体积等于圆柱粮囤的体积.所以先求出麦堆的体积,再除以圆柱粮囤的底面积,即得粮囤的高。

【解法1】麦堆的底面半径是多少?

25.12÷3.14÷2=4(米)

麦堆的体积是多少立方米?

圆柱粮囤的高是多少米?

综合算式:

【分析2】根据麦堆的体积和圆柱粮囤体积相等列方程解.

【解法2】设圆柱粮囤高是h米.

体积,而这个圆柱与粮囤的体积相等,即积一定,根据圆柱体积=πr2h可知,圆柱高h与半径的平方r2成反比例.由此列方程解.

【解法3】设圆柱粮囤高为h米.

麦堆底半径:25.12÷3.14÷2=4(米)

粮囤底半径:4÷2=2(米)

16=4h

h=4

答:这个圆柱形粮国的高是4米.

【评注】解法3的思路最简单、最灵活,运算最简便,是本题的最佳解法.

例119 一个圆锥体的体积是36立方分米,高是9分米,比与它等底的圆柱体的体积小12立方分米,这个圆柱体的高是多少分米?(天津市河西区)

【分析1】先求圆锥的底面积即圆柱的底面积,再求圆柱体积,最后求圆柱的高.

【解法1】圆柱底面积是多少?

36×3÷9=12(平方分米)

圆柱的体积是多少?

36+12=48(立方分米)

圆柱的高是多少?

48÷12=4(分米)

综合算式:(36+12)÷(36×3÷9)

=48÷12=4(分米).

【分析2】如果设圆柱高为h,那么它相当于高为3h的等底圆锥,而这的高与圆锥的体积成正比例.

【解法2】设圆柱体的高是h分米.

(36+12)∶3h=36∶9

答:这个圆柱体的高是4分米。

【评注】解法2的思路简单明白,运算最为简便,是本题的较好解法.本题还可用方程解,读者试解一下.

例120 如下图,求阴影部分的面积(单位:厘米).

(湖北省武汉市)

【分析1】从图中条件可知,三角形为等腰直角三角形,所以两个锐角都是45°.因此用三角形的面积分别减去三个扇形的面积,即得阴影面积.

【解法1】(10+10)×(10+10)÷2

=20×20÷2-3.14×25-3.14×25

=200-78.5-78.5=43(平方米)

【分析2】因为三个空白扇形恰好拼成180°的扇形,所以用三角形的面积减去圆心角是180°的扇形面积,即得阴影部分的面积.

【解法2】(10+10)×(10+10)÷2

=20×20÷2-3.14×10×10÷2

=200-157=43(平方厘米).

【分析3】同分析2.用三角形的面积减去半圆的面积,即得阴影部分的面积.

【解法3】(10×2)×(10×2)÷2-3.14×10×10÷2

=200-157=43(平方厘米).

答:阴影部分的面积是43平方厘米.

【评注】 比较以上三种解法,解法3的思路较灵活,运算简便,是本题较好解法.

例121 右下图是由若干个1立方厘米的正方体木块摆成的图形,它的体积是多少立方厘米?

(广东省广州市越秀区)

【分析1】把此图分为三层,最底层的长是5厘米,宽是4厘米,高是1厘米,由此可求底层的体积.同样可求第一层和第二层的体积,再将三层的体积加起来即得此形体体积.

【解法1】最底层的体积是多少?

5×4×1=20(立方厘米)

第一层和第二层的体积共多少?

4×2×2=16(立方厘米)

此形体的体积是多少?

20+16=36(立方厘米)

综合算式:5×4×1+4×2×2

=20+16=36(立方厘米).

【分析2】把这个形体切成一个长4厘米、宽3厘米、高1厘米和一个长4厘米、宽2厘米、高3厘米的两个长方体,求其体积和.

【解法2】4×3×1+4×2×3

=12+24=36(立方厘米).

【分析3】把原形体补充为一个长5厘米、宽4厘米、高3厘米的长方体,求出它的体积,再减去多补充的体积4×3×2=24(立方厘米),即得原形体的体积.

【解法3】5×4×3-4×3×2

=60-24=36(立方厘米).

【分析4】因为第

一、二层共有4×2×2=16(块),第三层有4×5=20(块),三层共36块,并且每块1立方厘米,由此可求36块多少立方厘米.

【解法4】1×(4×2×2+4×5)

=1×(16+20)=36(立方厘米).

答:它的体积是36立方厘米.

【评注】以上四种解法各有特色,读者可根据自己的实际情况灵活选用.

例122 如图,已知圆的直径是8厘米,求阴影部分的周长和面积.

(陕西省西安市新城区)

【分析1】图中阴影部分的周长是大圆半周长与小圆两个半周长的和,它的面积是大半圆的面积与小半圆面积的差,再加小半圆面积的和.

【解法1】

周长:3.14×8÷2+3.14×(8÷2)÷2×2

=25.12÷2+12.56÷2×2

=12.56+12.56=25.12(厘米)

=3.14×4×4÷2-3.14×2×2÷2+3.14×2×2÷2

=25.12(平方厘米).

【分析2】由图可知两个小半圆是相等的,因此阴影小半圆恰好补充空白小半圆,那么阴影面积等于大圆面积减去空白大半圆面积;阴影周长是小圆周长与大圆半周长的和.

=12.56+12.56=25.12(厘米)

=3.14×16-3.14×8

=3.14×(16-8)=25.12(平方厘米).

【分析3】因为大圆直径是小圆直径的2倍,所以小圆的周长和大圆的半周长相等,由此可知阴影部分周长恰是大圆的周长.将阴影小半圆移到空白小半圆使其重合,那么阴影部分恰是大半圆.

【解法3】周长:3.14×8=25.12(厘米)

=3.14×16÷2=25.12(平方厘米).

答:略.

【评注】比较以上三种解法,解法3的思路最直接最灵活,运算最简便,是最佳解法.

例123 如图,求阴影部分的面积(单位:厘米).

(辽宁省大连市中山区)

【分析1】先求出扇形的半径和圆心角的度数,再根据扇形面积公式求阴影的面积.

【解法1】半径:36÷2=18(厘米)圆心角:360°-60°=300°阴影面积:

=847.8(平方厘米).

【分析2】先求出扇形所在圆的面积,再求阴影部分占圆面积的几分之几,最后运用分数乘法应用题的解法求阴影面积.

=3.14×270=847.8(平方厘米).

【分析3】先求扇形所在圆的面积,再求空白扇形的面积,用圆面积减去空白扇形面积,即得阴影扇形的面积.

=3.14×18×18-3.14×18×3

=847.8(平方厘米).

【分析4】把扇形所在圆的面积看作“1”,那么空白扇形的面积占圆

的面积.

=3.14×270=847.8(平方厘米).

答:阴影部分的面积是847.8平方厘米.

【评注】比较以上四种解法,解法1的思路最简单,运算最简便,是本题最佳解法.

例124 在一个现代化的体育馆里铺设了30块长20米、宽3.5米、厚0.03米的硬塑地板,这个体育馆的面积有多少平方米?

(江苏省南京市鼓楼区)

【分析1】先求出每块硬塑板的占地面积,再求30块硬塑板的面积即体育馆占地面积.

【解法1】20×3.5×30

=70×30=2100(平方米).

【分析2】把这30块硬塑板平放成宽20米,长是30个3.5米的长方形,求出这个长方形的面积即体育馆的面积.

【解法2】3.5×30×20

=105×20=2100(平方米).

【分析3】把这30块硬塑板平放成长是30个20米、宽是3.5米的长方形,求出这个长方形的面积即体育馆的面积.

【解法3】20×30×3.5

=600×3.5=2100(平方米).

答:这个体育馆的面积有2100平方米.

【评注】解法1的思路最直接,解法最佳.

例125 求图中阴影部分的面积(单位:厘米).

(吉林省)

【分析1】先求平行四边形的面积,再求空白三角形的面积,用平行四边形的面积减去三角形的面积,即得阴影部分的面积.

【解法1】8×4-8×4÷2

=32-16=16(平方厘米).

【分析2】假设ae是6厘米,那么be的长是8-6=2厘米.由此直接求出两个阴影三角形的面积,再求它们的面积和,即得阴影面积.

【解法2】假设ae长6厘米,那么be的长是8-6=2厘米.

6×4÷2+2×4÷2

=12+4=16(平方厘米).

【分析3】因为三角形dec和平行四边形等底等高,所以三角形dec的面积是平行四边形面积的一半.由此求出平行四边形的面积再除以2即得阴影部分的面积.

【解法3】8×4÷2=16(平方厘米).

【分析4】把三角形ade沿ab向右平移,使ad与bc重合,这样两个阴影三角形恰好拼成一个底是8厘米、高是4厘米的三角形,求出此三角形的面积即得阴影面积.

【解法4】8×4÷2=16(平方厘米).

答:阴影部分的面积是16平方厘米.

【评注】解法1和解法2虽然易于理解和掌握,但运算较繁.解法3和解法4的思路直接,简单灵活,运算简便,是本题最佳解法.

例127 如图,求阴影部分的面积(单位:厘米).

(湖南省长沙市东区)

【分析1】先求大半圆的面积,再求小半圆的面积,用大半圆面积减去小半圆面积即得阴影部分的面积.

=1413-39.25

=1373.75(平方厘米).

【分析2】先求大圆面积,再求小圆面积,用大圆面积减去小圆面积,再除以2即得阴影部分的面积.

=(2826-78.5)÷2

=2747.5÷2=1373.75(平方厘米).

【分析3】本题是求半圆环面积.可先求圆环面积,再除以2即得.如果设大圆半径为r,小圆半径为r,那么圆环面积=πr2-πr2=π(r2-r2)

【解法3】r=60÷2=30(厘米)

r=10÷2=5(厘米)

3.14×(30×30-5×5)÷2

=3.14×(900-25)÷2

=2747.5÷2=1373.75(平方厘米).

【评注】比较以上五种解法,前四种解法的综合算式可通过乘法分配律相互转化,其中解法3的运算简便,是本题的较好解法.

例129 从一个长方体上截下一个棱长4厘米的正方体后,剩下的是一个长方体,它的体积是32立方厘米.原来长方体最长的一条棱是多少厘米?

(山西省太原市)

【分析1】因为截下的是正方体,所以剩下长方体的截面是正方形.因此可求出剩下长方体的长,再加上截下正方体的棱长,即得原来长方体的最长棱.

【解法1】剩下长方体的长?

32÷(4×4)=2(厘米)

原来长方体的最长棱?

2+4=6(厘米)

综合算式:32÷(4×4)+4

=32÷16+4=6(厘米).

【分析2】用剩下长方体的体积加上截下正方体的体积,即得原来长方体的体积.再根据“长方体体积=底面积×高”,用原长方体的体积除以底面积即得它的最长棱.

【解法2】截下正方体的体积?

4×4×4=64(立方厘米)

原来长方体的体积?

64+32=96(立方厘米)

原长方体的最长棱?

96÷(4×4)=6(厘米)

综合算式:(4×4×4+32)÷(4×4)

=(64+32)÷16=96÷16=6(厘米).

【分析3】根据“剩下的长方体体积加上截下的正方体体积等于原来长方体的体积”这一等量关系,列方程解.

【解法3】设原来最长棱x厘米.

32+4×4×4=(4×4)x

32+64=16x

x=96÷16

x=6

【分析4】用比例解法.因为长方体的体积÷高=底面积,底面积一定,所以长方体的体积和高成正比例.即长方体的体积与最长棱成正比例.

【解法4】设原来最长棱x厘米.

(4×4×4)∶4=(32+4×4×4)∶x

64∶4=96∶x

64x=4×96

x=6

答:原来长方体的最长棱是6厘米.

【评注】后三种解法都需要求出原来长方体的体积,再求原来的最长棱,运算较繁.解法1的思路简单明白,且运算简便,所以是本题的最佳解法.

例131 把一个高3分米圆柱体的底面分成许多个相等的扇形,然后把圆柱体切开,拼成一个与它等高的近似长方体,长方体的表面积比圆柱体的表面积增加12平方分米,原来圆柱体的体积是多少?

(福建省福州市)

【分析1】把圆柱体切拼成长方体后,它的表面积实际上增加了两个长方形s的面积,即12平方分米.由此可求一个长方形的面积,再除以它的长(即圆柱的高),即得它的宽(即圆柱底面半径).由此可根据圆柱体积公式求它的体积.

【解法1】3.14×(12÷2÷3)2×3

=3.14×4×3=37.68(立方分米).

【分析2】先求圆柱底面半径,再求圆柱底面半周长,即长方体的长.最后根据长方体的体积=长×宽×高,或把s面当作底面,根据长方体体积=底面积×高,求出长方体体积,即圆柱的体积.

【解法2】(12÷2÷3×3.14)×(12÷2÷3)×3

=6.28×2×3=37.68(立方分米).

或: (12÷2)×(12÷2÷3×3.14)

=6×6.28=37.68(立方分米).

【分析3】如图把长方体的前面(曲面)当作底面,长方体的宽(半径)当作高,根据长方体的体积=底面积×高,求出长方体的体积.关键是先求圆柱侧面积的一半(曲面).

【解法3】(12÷2÷3×3.14×3)×(12÷2÷3)

=18.84×2=37.68(立方分米).

答:原来圆柱体的体积是37.68立方分米.

【评注】比较以上四种解法,解法1的运算较简便,思路也较直接,是本题较好的解法.后两种解法的运算虽繁些,但对一些特殊题目的解答,可起到事半功倍的作用.

以下为关联文档:

2013年杜鹃小学六年级数学毕业会考试卷2013年实验中心小学数学毕业会考试卷 参考答案与试题解析 一、做计算,我能行.(本部分考查学生的口算、解方程、简便计算能力,会解答文字题和求组合图形阴影部分面积) 1.(8分)(2012 长...

小学四年级数学下学期期中试卷四年级数学下学期期中评估试卷 分数: 一、我会填。(每空1分,共18分) 1、算式80+80 8-81,先算( )法,再算( )法,最后算( )法,结果得( )。 2、32 8=4,那么( )能被( )整除。 3、( )不能做除数。 4、两个...

《合理运用技能建构型游戏辅助数学教学的实践与研究》王璨] 一、研究缘起。在日常教学中,我们经常会看到这样的现象:很多学生对数学提不起兴趣,觉得数学课堂枯燥乏味,对于练习课更是没劲去听、不愿去做,从而造成数学成绩不理想,进而转...

2013年小学二年级下学期第三次月考数学试卷翡翠山湖小学2013年春季第三次月考 二年级数学试卷 一、口算。(共16分) 600+800= 2800-700= 22+61= 34-18= 8 3= 7000+1000= 95-50= 700+40= 24 4= 7800-1800= 36+42= 9800-41...

《一课研究视角下的小学数学教学理解与教学创新——以斗转星移,转眼间培育站一个学期的研修进入了尾声。2019年1月22日上午,培育站全体学员在长江路小学参加了本学期的最后一个集中研修活动,活动中聆听了仲崇恒老师做的一场《一课...

用好教材,培养数学阅读能力《跳出数学数学》读书笔张鑫 ]通过阅读这本书,我深刻的了解到,数学的教学应该站在数学和文化的交集上,跳出数学数学。学科间互相融合,课堂才能回味无穷。教师心中应该有很大的教学观,应该用于打破学科...

全国“学成导航·活力课堂”小学数学教学专题研讨会2011年5月,我来到了美丽的江海门户 海门,参加《全国 学成导航 活力课堂 小学数学教学专题研讨会》。在这一天半的时间里,我聆听了著名特级教师华应龙和潘小明的课,参加了专家学...

重视数学概念本质的理解《小学数学课堂的有效教学》读利用平时教学的间隙时间,我读了《小学数学课堂的有效教学》一书。本书是通过剖析发生在课堂教学中的真实事例,阐述了数学的核心概念与基本技能有哪些、怎么教等内容。下面就来...

学习资源支持型分层教学在小学数学教学中的应用课堂教学是日常教育教学的重要场所,因此要提升教育教学质量就必须提升课堂教学的高效性以及调动学生在课堂学习中的积极性。而分层教学是提升课堂教学高效性的最有效的方法,下...

推荐阅读
图文推荐