三九宝宝网宝宝教育学龄段教育

初三二次函数知识点总结

02月12日 编辑 39baobao.com

[中考各科易错知识点]初中物理易错点 一、测量 ⒈长度L:主单位:米;测量工具:刻度尺;测量时要估读到最小刻度的下一位;光年的单位是长度单位。 ⒉时间t:主单位:秒;测量工具:钟表;实验室中用停表。1时=3600秒,1...+阅读

鄂、。。貌似图像啥的发不出来撒、。。要是亲很想要的话在找我要把、。。嘻嘻、。。二次函数知识点总结二次函数知识点: 1.二次函数的概念:一般地,形如(是常数,)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数,而可以为零.二次函数的定义域是全体实数.2. 二次函数的结构特征: ⑴ 等号左边是函数,右边是关于自变量的二次式,的最高次数是2. ⑵ 是常数,是二次项系数,是一次项系数,是常数项.二次函数的基本形式1. 二次函数基本形式:的性质:结论:a 的绝对值越大,抛物线的开口越小。

总结:的符号 开口方向 顶点坐标 对称轴 性质 向上 轴 时,随的增大而增大;时,随的增大而减小;时,有最小值. 向下 轴 时,随的增大而减小;时,随的增大而增大;时,有最大值.2. 的性质:结论:上加下减。总结:的符号 开口方向 顶点坐标 对称轴 性质 向上 轴 时,随的增大而增大;时,随的增大而减小;时,有最小值. 向下 轴 时,随的增大而减小;时,随的增大而增大;时,有最大值.3. 的性质:结论:左加右减。

总结:的符号 开口方向 顶点坐标 对称轴 性质 向上 X=h 时,随的增大而增大;时,随的增大而减小;时,有最小值. 向下 X=h 时,随的增大而减小;时,随的增大而增大;时,有最大值. 4. 的性质:总结:的符号 开口方向 顶点坐标 对称轴 性质 向上 X=h 时,随的增大而增大;时,随的增大而减小;时,有最小值. 向下 X=h 时,随的增大而减小;时,随的增大而增大;时,有最大值.二次函数图象的平移 1. 平移步骤: ⑴ 将抛物线解析式转化成顶点式,确定其顶点坐标; ⑵ 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下: 2. 平移规律 在原有函数的基础上“值正右移,负左移;值正上移,负下移”. 概括成八个字“左加右减,上加下减”.三、二次函数与的比较请将利用配方的形式配成顶点式。

请将配成。总结: 从解析式上看,与是两种不同的表达形式,后者通过配方可以得到前者,即,其中.四、二次函数图象的画法五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的点、与轴的交点,(若与轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.五、二次函数的性质 1. 当时,抛物线开口向上,对称轴为,顶点坐标为.当时,随的增大而减小;当时,随的增大而增大;当时,有最小值. 2. 当时,抛物线开口向下,对称轴为,顶点坐标为.当时,随的增大而增大;当时,随的增大而减小;当时,有最大值.六、二次函数解析式的表示方法 1. 一般式:(,,为常数,); 2. 顶点式:(,,为常数,); 3. 两根式:(,,是抛物线与轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系 1. 二次项系数 二次函数中,作为二次项系数,显然. ⑴ 当时,抛物线开口向上,的值越大,开口越小,反之的值越小,开口越大; ⑵ 当时,抛物线开口向下,的值越小,开口越小,反之的值越大,开口越大. 总结起来,决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决定开口的大小. 2. 一次项系数 在二次项系数确定的前提下,决定了抛物线的对称轴. ⑴ 在的前提下, 当时,,即抛物线的对称轴在轴左侧; 当时,,即抛物线的对称轴就是轴; 当时,,即抛物线对称轴在轴的右侧. ⑵ 在的前提下,结论刚好与上述相反,即 当时,,即抛物线的对称轴在轴右侧; 当时,,即抛物线的对称轴就是轴; 当时,,即抛物线对称轴在轴的左侧. 总结起来,在确定的前提下,决定了抛物线对称轴的位置.总结: 3. 常数项 ⑴ 当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正; ⑵ 当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为; ⑶ 当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为负. 总结起来,决定了抛物线与轴交点的位置. 总之,只要都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定: 根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况: 1. 已知抛物线上三点的坐标,一般选用一般式; 2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; 3. 已知抛物线与轴的两个交点的横坐标,一般选用两根式; 4. 已知抛物线上纵坐标相同的两点,常选用顶点式.二、二次函数图象的对称 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于轴对称 关于轴对称后,得到的解析式是; 关于轴对称后,得到的解析式是; 2. 关于轴对称 关于轴对称后,得到的解析式是; 关于轴对称后,得到的解析式是; 3. ...

以下为关联文档:

研究生入学考试数学二的知识点有哪些下届的还没出来,但是每年差不大,知识点就这几个,只是有些考的比较深入 高等数学 一、函数、极限、连续 考试内容 函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复...

Matlab问题求教用欧拉法计算函数dyfun =inline('-2*(x^3-cos(x)) +8.5'); h = 1; %步长为1 x = 0:h:3; y(1)=1; %初值为y(0)=1,matlab数组从1编号 for n = 1:length(x)-1 y(n+1) = y(n)+h*feval(dyfun,x(n));...

实变函数问题: Borel集有什么特性为什么实变函数要研究Borel集The Borel sum of a series is the Laplace transform of the sum of the term-by-term inverse Laplace transform of the original series. If the Laplace transform of...

急问高一函数题。如图第12题。请帮分析解答一下好吗Note1: f(x)= - (x+a)/(bx+1) 为 [-1,1] 上的奇函数, 则 f(0)=0 也就是 0 = - a/1 a=0 所以 f(x)= -x/(bx+1) Note2: bx+1=0 <==> x= -1/b, -1/b 不属於 [ -1, 1] |1/b| >1 |...

初中二次函数要点二次函数 一般式:1:y=ax^2;+bx+c(a≠0,a、b、c为常数), 则称y为x的二次函数。顶点坐标(-b/2a,(4ac-b^2)/4a) (若给出抛物线上两点及另一个条件,通常可设一般式) 2:顶点式:y=a(x-h)^2+...

初三二次函数知识梳理一般式Y=ax2+bx+c(a不等于0)a的作用,决定二次函数开口方向和开口大小b的作用,和a一起决定二次函数的对称轴c的作用,决定截距对称轴x=-b/2a顶点坐标[-b/2a,(4ac-b2)/4a]顶点式:y=...

谁能告诉我一些有关中学二次函数知识点二次函数 I.定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系: y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a0时,抛物线向上开口;当a|a|越大...

关于九下二次函数所有基本知识点二次函数的基本知识点I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0)则称y为x的二次函数。2.图像:一条永无止境的抛物线。3 抛物线...

初三二次函数知识点及考点是什么我本人也是将升上初三的学生。一些和我大约岁数的亲戚(考过中考,有满意的也有失意的)有给我一些建议,在这里也跟大家分享下。 初一初二基础要好 —— 这个是一定的,否则初三就要...

推荐阅读
图文推荐