三九宝宝网宝宝百科宝宝知识

数学必修中三角恒等变形中所有重要的公式

03月22日 编辑 39baobao.com

[求高二数学必修2所有公式 !]一、立体几何初步 (一)几何体 1.柱、锥、台、球的结构特征 (1)柱 棱柱:一般的,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何...+阅读

[1-tan^2(α)]

·三倍角公式:

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

tan3α=(3tanα-tan^3(α))÷(1-3tan^2(α))

sin3α=4sinα*sin(60-α)sin(60+α)

cos3α=4cosα*cos(60-α)cos(60+α)

tan3α=4tanα*tan(60-α)tan(60+α)

·半角公式:

sin^2(α/2)=(1-cosα)/2

cos^2(α/2]sin[(α-β)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα

·万能公式:

半角的正弦、余弦和正切公式(降幂扩角公式)

sinα=2tan(α/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2)=(1+cosα)/2)/[1+tan^2(α/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/2)]

tanα=2tan(α/2)/(1+tan^2(α))

tan(2α)=2tanα/:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2]

cosα-cosβ=-2sin[(α+β)/2)[cos(α+β)-cos(α-β)]

·和差化积公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]cos[(α-β)/cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α+β)=sinα·cosβ+cosα·sinβ

sin(α-β)=sinα·cosβ-cosα·sinβ

tan(α+β)=(tanα+tanβ)/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/:

sin(2α)=2sinα·cosα=2tan^2(α)/[1+tan^2(α)]

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)=(1-tan^2(α))/(1+tanα·tanβ)

·二倍角公式;[1-tan^2(α/2)]

·积化和差公式

急求高中数学中三角恒等变换这一章中的所有公式!

·平方关系: sin^2α+cos^2α=1 1+tan^2α=sec^2α 1+cot^2α=csc^2α ·积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα ·倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边 正切等于对边比邻边, ·[1]三角函数恒等变形公式 ·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·三角和的三角函数: sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) ·辅助角公式: Asinα+Bcosα=(A²+B²)^(1/2)sin(α+t),其中 sint=B/(A²+B²)^(1/2) cost=A/(A²+B²)^(1/2) tant=B/A Asinα-Bcosα=(A²+B²)^(1/2)cos(α-t),tant=A/B ·倍角公式: sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos²(α)-sin²(α)=2cos²(α)-1=1-2sin²(α) tan(2α)=2tanα/[1-tan²(α)] ·三倍角公式: sin(3α)=3sinα-4sin³(α)=4sinα·sin(60+α)sin(60-α) cos(3α)=4cos³(α)-3cosα=4cosα·cos(60+α)cos(60-α) tan(3α)=tan a · tan(π/3+a)· tan(π/3-a) ·半角公式: sin(α/2)=±√((1-cosα)/2) cos(α/2)=±√((1+cosα)/2) tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα ·降幂公式 sin²(α)=(1-cos(2α))/2=versin(2α)/2 cos²(α)=(1+cos(2α))/2=covers(2α)/2 tan²(α)=(1-cos(2α))/(1+cos(2α)) ·万能公式: sinα=2tan(α/2)/[1+tan²(α/2)] cosα=[1-tan²(α/2)]/[1+tan²(α/2)] tanα=2tan(α/2)/[1-tan²(α/2)] ·积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] ·和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

高一必修四第三章三角恒等变换所有公式分类

两角和与差的三角函数:

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α+β)=sinα·cosβ+cosα·sinβ

sin(α-β)=sinα·cosβ-cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

二倍角公式:

sin(2α)=2sinα·cosα

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan(2α)=2tanα/[1-tan^2(α)]

三倍角公式:

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

半角公式:

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα

万能公式:

半角的正弦、余弦和正切公式(降幂扩角公式)

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

积化和差公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

和差化积公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

求高中三角恒等变化的所有公式包括变形公式可提高悬赏

基础三角恒等式sin²a+cos²a=1sina/cosa=tana两角和与差倍角公式二倍角sin2α = 2cosαsinα = 2tanα / (1 + tan²α)cos2α = cos²α-sin²α=1-2sin²α=2cos²α-1tan2α = 2tanα/[1 - (tanα)²][1] 二倍角变式sin2α = sin^2(α + π/4) - cos^2(α + π/4) = 2sin^2(a + π/4) - 1 = 1 - 2cos^2(α + π/4);cos2α = 2sin(α + π/4)cos(α + π/4)三倍角sin3α=3sinα-4sin³αcos3α=4cos³α-3cosαtan3α=(3tanα-tan³α)/(1-3tan²α)sin3α=4sinα*sin(π/3-α)sin(π/3+α)cos3α=4cosα*cos(π/3-α)cos(π/3+α)tan3α=tanα*tan(π/3-α)tan(π/3+α)n倍角根据欧拉公式(cos θ+i·sin θ)^n=cos nθ+i·sin nθ (注:sin θ前的 i 是虚数单位,即-1开方)将左边用二项式定理展开分别整理实部和虚部可以得到下面两组公式sin(nα)=ncos^(n-1)α·sinα-C(n,3)cos^(n-3)α·sin^3α+C(n,5)cos^(n-5)α·sin^5α-…cos(nα)=cos^nα-C(n,2)cos^(n-2)α·sin^2α+C(n,4)cos^(n-4)α·sin^4α辅助角Asinα+Bcosα=√(A^2+B^2)sin[α+arctan(B/A)]Asinα+Bcosα=√(A^2+B^2)cos[α-arctan(A/B)]半角公式sin(α/2)=±√[(1-cosα)/2]cos(α/2)=±√[(1+cosα)/2]tan(α/2)=±√[(1-cosα)/(1+cosα)]=sinα/(1+cosα)=(1-cosα)/sinα=cscα-cotαcot(α/2)=±√[(1+cosα)/(1-cosα)]=(1+cosα)/sinα=sinα/(1-cosα)=cscα+cotαsec(α/2)=±√[(2secα/(secα+1)]csc(α/2)=±√[(2secα/(secα-1)]诱导公式kπ+asin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(kπ+α)=tanαcot(kπ+α)=cotαsec(2kπ+α)=secαcsc(2kπ+α)=cscαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsec(π+α)=-secαcsc(π+α)=-cscα-asin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotαsec(-α)=secαcsc(-α)=-cscαπ-asin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsec(π-α)=-secαcsc(π-α)=cscαπ/2±asin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsec(π/2+α)=-cscαcsc(π/2+α)=secαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsec(π/2-α)=cscαcsc(π/2-α)=secα3π/2±asin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsec(3π/2+α)=cscαcsc(3π/2+α)=-secαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsec(3π/2-α)=-cscαcsc(3π/2-α)=-secα恒等变形tan(a+π/4)=(tan a+1)/(1-tan a)tan(a-π/4)=(tan a-1)/(1+tan a)asinx+bcosx=[√(a²+b²)]{[a/√(a²+b²)]sinx+[b/√(a²+b²)]cosx}=[√(a²+b²)]sin(x+y)【辅助角公式,其中tan y=b/a,或者说sinx=b/[√(a²+b²)],cosx=a/[√(a²+b²)]】万能代换半角的正弦、余弦和正切公式(降幂扩角公式)积化和差sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ= -(1/2)[cos(α+β)-cos(α-β)](注:留意最前面是负号)和差化积内角公式设A,B,C是三角形的三个内角sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sin(C/2)tanA+tanB+tanC=tanAtanBtanCcot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)=1cotAcotB+cotBcotC+cotCcotA=1(cosA)^2+(cosB)^2+(cosC)^2+2cosAcosBcosC=1sin2A+sin2B+sin2C=4sinAsinBsinC

以下为关联文档:

三角恒等变换公式∵cosa=3/5 ∴sina=1-cosa^2的开方=4/5(a属于[0,pi],所以sina>0) ∵sin(a+b)=-4/5 ∵a,b属于[0,pi], ∴a+b属于[0,2pi], ∴cos(a+b)=3/5或-3/5 当cos(a+b)=3/5时,cosb=cos[(a+...

三角函数恒等变形公式^只用熟记两角和差公式(这个推导麻烦),其他的都可以用它推导。 1.万能公式 令tan(a/2)=t sina=2t/(1+t^2) cosa=(1-t^2)/(1+t^2) tana=2t/(1-t^2) 2.辅助角公式 asint+bcost=(a...

数学三角函数中的公式三角函数公式 正弦(sin):角α的对边比上斜边 余弦(cos):角α的邻边比上斜边 正切(tan):角α的对边比上邻边 余切(cot):角α的邻边比上对边 正割(sec):角α的斜边比上邻边 余割(csc):角α的斜边...

数学必修一所有公式要全面数学必修1-5常用公式及结论必修1: 一、集合 1、含义与表示: (1)集合中元素的特征:确定性,互异性,无序性 (2)集合的分类;有限集,无限集 (3)集合的表示法:列举法,描述法,图示法 2、集合间的关...

高一必修一数学所有公式三角函数公式 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanA...

高一数学必修1所有公式三角函数公式两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtan...

数学必修五所有公式等差数列的基本性质 ⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d. ⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd. ⑶若{ a }、...

高中数学必修5所有公式数列基本公式: 9、一般数列的通项an与前n项和Sn的关系:an= 10、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=...

人教版高中数学必修必修必修必修五的所有公式三角函数: 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB...

推荐阅读
图文推荐