三九宝宝网宝宝百科宝宝知识

初1数学有哪些数学思想

02月16日 编辑 39baobao.com

[1小学数学中常见的数学思想方法有哪些]《领悟数学思想方法,让课堂绽放魅力,让学生展现风采》——小学数学教学中渗透数学思想方法思考与实践汇报:兆麟小学农丰小学兰陵小学今天由我们三人汇报的题目是:《领悟数学思想...+阅读

所谓数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。数学思想是对数学事实与理论经过概括后产生的本质认识;基本数学思想则是体现或应该体现于基础数学中的具有奠基性、总结性和最广泛的数学思想,它们含有传统数学思想的精华和现代数学思想的基本特征,并且是历史地发展着的。

通过数学思想的培养,数学的能力能才会有一个大幅度的提高。掌握数学思想,就是掌握数学的精髓。 1.函数思想: 把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法。 2.数形结合思想: “数无形,少直观,形无数,难入微”,利用“数形结合”可使所要研究的问题化难为易,化繁为简。

把代数和几何相结合,例如对几何问题用代数方法解答,对代数问题用几何方法解答,这种方法在解析几何里最常用。例如求根号((a-1)^2+(b-1)^2)+根号(a^2+(b-1)^2)+根号((a-1)^2+b^2)+根号(a^2+b^2)的最小值,就可以把它放在坐标系中,把它转化成一个点到(0,1)、(1,0)、(0,0)、(1,1)四点的距离,就可以求出它的最小值。 3.分类讨论思想: 当一个问题因为某种量的情况不同而有可能引起问题的结果不同时,需要对这个量的各种情况进行分类讨论。

比如解不等式|a-1|>4的时候,就要讨论a的取值情况。 4.方程思想: 当一个问题可能与某个方程建立关联时,可以构造方程并对方程的性质进行研究以解决这个问题。例如证明柯西不等式的时候,就可以把柯西不等式转化成一个二次方程的判别式。 5.整体思想: 从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理。

整体思想方法在代数式的化简与求值、解方程(组)、几何解证等方面都有广泛的应用,整体代入、叠加叠乘处理、整体运算、整体设元、整体处理、几何中的补形等都是整体思想方法在解数学问题中的具体运用。 6.转化思想: 在于将未知的,陌生的,复杂的问题通过演绎归纳转化为已知的,熟悉的,简单的问题。三角函数,几何变换,因式分解,解析几何,微积分,乃至古代数学的尺规作等数学理论无不渗透着转化的思想。

常见的转化方式有:一般 特殊转化,等价转化,复杂 简单转化,数形转化,构造转化,联想转化,类比转化等。 7.隐含条件思想: 没有明文表述出来,但是根据已有的明文表述可以推断出来的条件,或者是没有明文表述,但是该条件是一个常规或者真理。 8.类比思想: 把两个(或两类)不同的数学对象进行比较,如果发现它们在某些方面有相同或类似之处,那么就推断它们在其他方面也可能有相同或类似之处。

9.建模思想: 为了描述一个实际现象更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。

10.化归思想: 化归思想就是化未知为已知,化繁为简,化难为易.如将分式方程化为整式方程,将代数问题化为几何问题,将四边形问题转化为三角形问题等.实现这种转化的方法有:待定系数法,配方法,整体代人法以及化动为静,由抽象到具体等转化思想 11.归纳推理思想: 由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理称为归纳推理(简称归纳),简言之,归纳推理是由部分到整体,由个别到一般的推理 另外,还有概率统计思想等数学思想,例如概率统计思想是指通过概率统计解决一些实际问题,如摸奖的中奖率、某次考试的综合分析等等。

另外,还可以用概率方法解决一些面积问题。

以下为关联文档:

数学解题思想有哪些建模,归类 1.函数思想: 把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法。 2.数形结合思想: 把代数和几何相结合,例如对几何问...

初中数学有哪些解题思想初中数学中蕴含的数学思想方法很多,最基本最主要的有:转化的思想方法,数形结合的思想方法,分类讨论的思想方法,函数与方程的思想方法等。1. 对应的思想和方法:在初一代数入门教学...

小学数学思想方法有哪些数学思想是内隐的,而数学方法是外显的,数学思想数学方法更深刻,更抽象地反映了数学对象间的内在联系。一般来说,前者给出了解决问题的方向,后者给出了解决问题的策略。但由于小...

小学数学中常用的数学思想方法有哪些小学数学常用的教学方法有六种,分别是: 讲授法、谈话法、讨论法、练习法、演示法、动手操作法、启发法 1、讲授法 讲授法是教师运用口头语言向学生描绘情境、叙述事实、解释概...

高等数学思想有哪些高数解题的四种思维定势 1、在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。 2、在题设条件或欲证结论中有定积分表达...

数学思想有哪些付费内容限时免费查看 回答 你好,很高兴为你解答。 数学思想包括:函数思想、数形结合思想、分类讨论思想、方程思想、整体思想、化归思想、隐含条件思想、类比思想、建模思想...

数学思想都有哪些一,函数与方程的思想 函数描述了客观世界中相互关联的量之间的依存关系,是对问题本身的数量特征及制约关系的一种刻划。因此函数思想的实质是用联系和变化的观点提出数学对象...

高一数学有哪些思想数学思想方法 数学思想是指人们对数学理论和内容的本质的认识,数学方法是数学思想的具体化形式,实际上两者的本质是相同的,差别只是站在不同的角度看问题。通常混称为“数学思...

数学基本思想有哪些高中数学基本数学思想 1.转化与化归思想:是把那些待解决或难解决的问题化归到已有知识范围内可解问题的一种重要的基本数学思想.这种化归应是等价转化,即要求转化过程中的前因...

推荐阅读
图文推荐