一下自己学习关联规则经典算法Apriori的笔记。
1、概述
Apriori算法是用一种称为逐层搜索的迭代方法,从项集长度k=1开始,选出频繁的k=1项集,根据先验性质:频繁项集的子集一定是频繁的(逆否命题:非频繁项集的超集一定是非频繁的,通俗的说就是某件事发生的概率很低,比这件事发生条件更严苛的事情发生的概率会更低),筛选k=2项集中的频繁项集,以此迭代k=3...。每迭代一次都要完整的扫描一次数据库。
2、关联规则三度:
支持度:占比
置信度:条件概率
提升度:相关性
3、R语言示例代码如下:(小众语言的辛酸:选项里没有。。)
[plain] view plain copy
library(arules)
#从rattle包中读入数据
dvdtrans <- read.csv(system.file("csv", "dvdtrans.csv",package="rattle"))
str(dvdtrans)
#将数据转化为合适的格式
data <- as(split(dvdtrans$Item,dvdtrans$ID),"transactions")
data
#用 apriori命令生成频繁项集,设其支持度为0.5,置信度为0.8
rules <- apriori(data, parameter=list(support=0.5,confidence=0.8,minlen = 2))
#用inspect命令查看提取规则
inspect(rules)
常用数据形式有data.frame格式和list格式,前者即A项集为一列B项集为另一列,后者为A和B放在同一个购物篮中。
去除冗余规则以及提取子规则代码如下:
[plain] view plain copy
redundant.rm <- function(rule,by="lift")
{
#rule:需要进行简化的规则
#by:在清除的时候根据那个变量来选择,
#可能取值为"support","lift","confidence"
a <- sort(rule,by=by)
m<- is.subset(a,a,proper=TRUE)
m[lower.tri(m, diag=TRUE)] <- NA
r <- colSums(m, na.rm=TRUE) >= 1
finall.rules <- a[!r]
return(finall.rules)
}
rules <- redundant.rm(rules)
rules.sub <- subset(rules, subset = lhs %in% "筛选项集名称" & lift > 1)