什么是主成分分析方法
主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标.
在统计学中,主成分分析(principal components analysis,PCA)是一种简化数据集的技术.它是一个线性变换.这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推.主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征.这是通过保留低阶主成分,忽略高阶主成分做到的.这样低阶成分往往能够保留住数据的最重要方面.但是,这也不是一定的,要视具体应用而定.