三九宝宝网宝宝教育计划总结

高中数学解题方法总结

02月22日 编辑 39baobao.com

[高中数学知识点详细总结]高中数学重点有什么?该怎样攻克? 高中数学重点内容还有很多.这些重点都是保持多年来的经验,他们分析过高考数学的题型,高中数学重点分为以下几个部分. 高中数学知识 一、函数和...+阅读

更多高考复习方法和试卷资料,可在交大新课程网上进行查看和下载。为了使回想、联想、猜想的方向更明确,思路更加活泼,进一步提高探索的成效,我们必须掌握一些解题的策略。 一切解题的策略的基本出发点在于“变换”,即把面临的问题转化为一道或几道易于解答的新题,以通过对新题的考察,发现原题的解题思路,最终达到解决原题的目的。 基于这样的认识,常用的解题策略有:熟悉化、简单化、直观化、特殊化、一般化、整体化、间接化等。

一、 熟悉化策略 所谓熟悉化策略,就是当我们面临的是一道以前没有接触过的陌生题目时,要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、经验或解题模式,顺利地解出原题。 一般说来,对于题目的熟悉程度,取决于对题目自身结构的认识和理解。从结构上来分析,任何一道解答题,都包含条件和结论(或问题)两个方面。因此,要把陌生题转化为熟悉题,可以在变换题目的条件、结论(或问题)以及它们的联系方式上多下功夫。 常用的途径有:

(一)、充分联想回忆基本知识和题型: 在解决问题之前,我们应充分联想和回忆与原有问题相同或相似的知识点和题型,充分利用相似问题中的方式、方法和结论,从而解决现有的问题。

(二)、全方位、多角度分析题意: 对于同一道数学题,常常可以不同的侧面、不同的角度去认识。因此,根据自己的知识和经验,适时调整分析问题的视角,有助于更好地把握题意,找到自己熟悉的解题方向。

(三)恰当构造辅助元素: 数学中,同一素材的题目,常常可以有不同的表现形式;条件与结论(或问题)之间,也存在着多种联系方式。因此,恰当构造辅助元素,有助于改变题目的形式,沟通条件与结论(或条件与问题)的内在联系,把陌生题转化为熟悉题。 数学解题中,构造的辅助元素是多种多样的,常见的有构造图形(点、线、面、体),构造算法,构造多项式,构造方程(组),构造坐标系,构造数列,构造行列式,构造等价性命题,构造反例,构造数学模型等等。

二、简单化策略 所谓简单化策略,就是当我们面临的是一道结构复杂、难以入手的题目时,要设法把转化为一道或几道比较简单、易于解答的新题,以便通过对新题的考察,启迪解题思路,以简驭繁,解出原题。 简单化是熟悉化的补充和发挥。一般说来,我们对于简单问题往往比较熟悉或容易熟悉。 因此,在实际解题时,这两种策略常常是结合在一起进行的,只是着眼点有所不同而已。 解题中,实施简单化策略的途径是多方面的,常用的有: 寻求中间环节,分类考察讨论,简化已知条件,恰当分解结论等。

1、寻求中间环节,挖掘隐含条件: 在些结构复杂的综合题,就其生成背景而论,大多是由若干比较简单的基本题,经过适当组合抽去中间环节而构成的。 因此,从题目的因果关系入手,寻求可能的中间环节和隐含条件,把原题分解成一组相互联系的系列题,是实现复杂问题简单化的一条重要途径。

2、分类考察讨论: 在些数学题,解题的复杂性,主要在于它的条件、结论(或问题)包含多种不易识别的可能情形。对于这类问题,选择恰当的分类标准,把原题分解成一组并列的简单题,有助于实现复杂问题简单化。

3、简单化已知条件: 有些数学题,条件比较抽象、复杂,不太容易入手。这时,不妨简化题中某些已知条件,甚至暂时撇开不顾,先考虑一个简化问题。这样简单化了的问题,对于解答原题,常常能起到穿针引线的作用。

4、恰当分解结论: 有些问题,解题的主要困难,来自结论的抽象概括,难以直接和条件联系起来,这时,不妨猜想一下,能否把结论分解为几个比较简单的部分,以便各个击破,解出原题。

三、直观化策略: 所谓直观化策略,就是当我们面临的是一道内容抽象,不易捉摸的题目时,要设法把它转化为形象鲜明、直观具体的问题,以便凭借事物的形象把握题中所及的各对象之间的联系,找到原题的解题思路。

(一)、图表直观: 有些数学题,内容抽象,关系复杂,给理解题意增添了困难,常常会由于题目的抽象性和复杂性,使正常的思维难以进行到底。 对于这类题目,借助图表直观,利用示意图或表格分析题意,有助于抽象内容形象化,复杂关系条理化,使思维有相对具体的依托,便于深入思考,发现解题线索。

(二)、图形直观: 有些涉及数量关系的题目,用代数方法求解,道路崎岖曲折,计算量偏大。这时,不妨借助图形直观,给题中有关数量以恰当的几何分析,拓宽解题思路,找出简捷、合理的解题途径。

(三)、图象直观: 不少涉及数量关系的题目,与函数的图象密切相关,灵活运用图象的直观性,常常能以简驭繁,获取简便,巧妙的解法。

四、特殊化策略 所谓特殊化策略,就是当我们面临的是一道难以入手的一般性题目时,要注意从一般退到特殊,先考察包含在一般情形里的某些比较简单的特殊问题,以便从特殊问题的研究中,拓宽解题思路,发现解答原题的方向或途径。

五、一般化策略 所谓一般化策略,就是当我们面临的是一个计算比较复杂或内在联系不甚明显的特殊问题时,要设法把特殊问题一般化,找出一...

以下为关联文档:

高中数学必须五知识点总结必修五知识点总结归纳必修五知识点总结归纳必修五知识点总结归纳必修五知识点总结归纳 ((( (一一一一))))解三角形解三角形解三角形解三角形 1、正弦定理:在C∆ΑΒ中,a、b、c分别为角...

高中数学知识点总结复数是高中代数的重要内容,在高考试题中约占8%-10%,一般的出一道基础题和一道中档题,经常与三角、解析几何、方程、不等式等知识综合.本章主要内容是复数的概念,复数的代数、几...

跪求新目标高中数学知识点总结及解题方法展开全部 数学是必考科目之一,故从初一开始就要认真地学习数学。那么,怎样才能学好数学呢?现介绍几种方法以供参考: 一、课内重视听讲,课后及时复习。 新知识的接受,数学能力的培...

总结归纳高中化学典型试题及解题方法看看优化设计或中学教材全解 一、关系式法 关系式法是根据化学方程式计算的巧用,其解题的核心思想是化学反应中质量守恒,各反应物与生成物之间存在着最基本的比例(数量)关系。...

总结高中化学解题方法一、关系式法 关系式法是根据化学方程式计算的巧用,其解题的核心思想是化学反应中质量守恒,各反应物与生成物之间存在着最基本的比例(数量)关系。 二、方程或方程组法 根据质量...

高中怎么总结解题和学习方法?怎么样的总结?学会总结有什么好处一、预习:在预览教材的总体内容后再细读,充分发挥自己的自学能力,理清哪些内容已经了解,哪些内容有疑问或是看不明白(即找重点、难点)分别标出并记下来。 这样既提高了自学能力,又...

高中数学圆锥曲线解题技巧归纳1、数列问题 (1)熟练掌握等差、等比数列的性质、通项公式和求和公式; (2)深刻理解课本上等差和等比数列求和公式是怎么推导出来的,其中蕴含的如“倒序相加”等解题思想是解题中经...

怎样总结试题答题思路学好高中数学高中的学习就其知识的难度本身来说不是很深,只是在用的时候比较麻烦。首先要掌握课本上的基本知识点。在此基础上才能谈总结试题答案思路。如何总结?不外乎三点,一是解题知识点...

高中求函数定义域值域单调性奇偶性的好方法数学高手帮忙总结一下1定义域的求法。 (1)若ƒ(x)是整式,则定义域为R 。 (2)若ƒ(x)是分式,则定义域为使分母不为零的全体实数。 (3)若ƒ(x)是偶次根式,则定义域为使被开方数为非负数的全体实数。 (4)若ƒ...

推荐阅读
图文推荐