[最大公约数和最小公倍数]如果数a能被数b整除,a就叫做b的倍数,b就叫做作a的约数.约数和倍数都表示一个数与另一个数的关系,不能单独存在.如只能说16是某数的倍数,2是某数的约数,而不能孤立地说16是倍数,2是约...+阅读
1.有一级茶叶96克,二级茶叶156克,三级茶叶240克,价值相等.现将这三种茶叶分别等分装袋(均为整数克),每袋价值相等,要使每袋价值最低应如何装袋?
2.a、b两数的最大公约数是12,已知a有8个约数,b有9个约数,求a与b.
3.两个数的积是6912,最大公约数是24,求:(1)它们的最小公倍数;(2)满足已知条件的自然数是哪几组?
4.甲、乙、丙三个学生定期向某老师求教,甲每4天去一次,乙每6天去一次,丙每9天去一次,如果这一次他们三人是3月23日都在这个老师家见面,那么下一次三人都在这个老师家见面的时间是几月几日?
5.求被5除余2,被6除余3,被7除4的大于1000、小于1500的所有自然数.
6.某个数与36的最大公约数是12,与36的最小公倍数是180,求这个数.
7.有三个自然数a、b、c,a与b的最大公约数是2;b和c的最大公约数是4;a和c的最大公约数是6;a、b、c三个数的最小公倍数是60,求这三个数的最小的和是多少?
答案仅供参考:
1.三种数量不等的茶叶价值相等,等分装袋后,每袋价值仍相等,由于每种茶叶的总价值相等,每袋价值也要相等,所以这三种茶叶分装的袋数也一定相同.为了使每袋价值最低,就应使袋数尽可能多,因此,每种茶叶应装的袋数是96,156,240的最大公约数.
(96,156,240)=4×3=12
96÷12=8,156÷12=13,240÷12=20
所以三种茶叶各自等分成12袋,并依次装8克,13克,20克.
2.因为(a,b)=12=22×3,所以a和b只有质因数2和3,又因为a有8个约数,8=2×2×2=2×4=8×1,所以a=23×3=24,同理b有9个约数,9=3×3=9×1,b=22×32=36.
3.(1)因为两个数的最大公约数与最小公倍数的乘积等于这两个数的积,所以这两个数的最小公倍数是6912÷24=288.
(2)因为两个数的最大公倍数除以它们的最大公约数等于这两个数分别除以它们的最大公约数所得商的乘积,且得到的这两个商是互质数.288÷24=12,12只能分解成12×1和4×3两组质因数的积,所以满足条件的有两组:
24×12=288,24×1=24;
24×4=96,24×3=72.
即这两组数为288和24,96和72.
4.他们下一次都在这个老师家见面的天数一定是4,6和9的最小公倍数.[4,6,9]≈36,经过36天,他们三人又要见面,那么3月23日开始,又经过36天,是4月28日,所以下一次三人都在这个老师家见面的时间是4月28日.
5.这个数被5除余2,被6除余3,被7除余4,尽管余数不同,但如果这个数加上3以后,恰好能被5,6,7整除,也就是说符合被5除余2,被6除余3,被7除余4的数等于5,6,7的公倍数减去3.[5,6,7]=210,符合条件的数可表示为210m-3,m是自然数.又因为所求数在1000到1500之间,当m=5时210×5-3=1047;当m=6时,210×6-3=1257;当m=7时,210×7-3=1467.所以所求的数为1047,1257,1467.
6.设所求数为a,已知(a,36)=12,有a=12n,n是自然数.又因为36=12×3,所以n与3互质,又已知[a,36]=180,180=12×3×5,所以n=5,故a=12×5=60.
7.因为a与c的最大公约数是6,因此a必有质因数2和3;由b与c的最大公约数是4,知b必有2个质因数2;由前两个条件知c必有2个质因数2和1个质因数3;要满足[a,b,c]=60=22×3×5,必有一个数含有质因数5;要使三个数的和最小,应b含有质因数5;所以这三个数为:a=2×3=6,b=2×2×5=20,c=2×2×3=12,它们的和是6+20+12=38.
以下为关联文档:
最大公约数和最小公倍数的比较bgcolor="#FFFFFF"> 教学目标 (一)进一步理解并掌握最大公约数和最小公倍数的概念,分清求最大公约数和最小公倍数的相同点和不同点。 (二)培养学生仔细、认真的做题习惯和比...
小学六年级数学最大公约数与最小公倍数复习题一、填空: 1、如果自然数A除以自然数B商是17,那么A与B的最大公约数是( ),最小公倍数是( )。 2、最小质数与最小合数的最大公约数是( ),最小公倍数是( )。 3、能被5、7、16整除的最小自然...
最小公倍数bgcolor="#FFFFFF"> 教学目标 (一)认识公倍数和最小公倍数。 (二)理解求两个数的最小公倍数的算理,掌握方法。 (三)通过教学,培养学生的比较推理和抽象概括的能力。 教学重点...