[从哲学的角度看教师的发展]假期中,由于各方面的需要,我又重新拿起上学时最头疼的书目 哲学 读了起来。也许是随着年龄的增长,阅历的增加,我竟能越读越投入,越读越佩服得伟大的哲学家马克思恩格斯五体投地。...+阅读
函数的概念最早产生于运动的研究.如伽利略是用文字语言来表述这些函数关系的.“从静止状态开始以定常加速度下降的物体,其经过的距离与所用时间的平方成正比”;“沿着同高度但不同坡度的倾斜平板下滑的物体,其下滑的时间与平板的长度成正比”;显然,只需引进适当的符号,上述的函数关系就可以明确的用数学形式表述: ; …以这些具体的函数为原型,17世纪的一些数学家通过弱抽象获得了如下的函数概念: “函数是这样一个量,它是从一些其它的量通过一系列代数运算而得到的.” 上述定义显然过于狭窄了,因为它事实上仅适用于代数函数的范围.因此,在其后的发展中,函数概念得到了进一步的扩展.随着数学研究的深入,人们逐渐接触到了一些超越函数,如对数函数,指数函数三角函数等,尽管这些函数已经超出了代数函数的范围,但是在一些数学家看来,两者区别仅仅在于超越函数重复代数函数的那些运算无限多次,从而人们又通过弱抽象提出了如下的函数概念: “函数是指由一个变量与一些常量,通过任何方式(有限的或无限的)形成的解析表达式.” 这一由欧拉给出的定义尽管仍然过于狭窄,在18世纪却曾长期占统治地位. 19世纪初,函数概念再次得到了扩展,函数的概念开始摆脱“解析表达式”,另外狄里克雷更提出了如下的函数概念:“如果对于给定区间上的每一个x值有唯一的一个y值同它对应,那么,y就是x的一个函数.” 最后,如果用任意的数学对象去取代具体的数量,并采用集合论的语言,则可以获得更为一般的“映射”概念: 如果在两个集合的元素之间存在有确定的对应关系,就称为是一个映射.函数这个数学名词是莱布尼兹在1694年开始使用的,以描述曲线的一个相关量,如曲线的斜率或者曲线上的某一点。
莱布尼兹所指的函数现在被称作可导函数,数学家之外的普通人一般接触到的函数即属此类。对于可导函数可以讨论它的极限和导数。此两者描述了函数输出值的变化同输入值变化的关系,是微积分学的基础。1718年,约翰·贝努里(en:Johann Bernoulli)把函数定义为“一个变量的函数是指由这个变量和常量以任何一种方式组成的一种量。”1748年,约翰·贝努里的学生欧拉(Leonhard Euler)在《无穷分析引论》一书中说:“一个变量的函数是由该变量和一些数或[常量]]以任何一种方式构成的解析表达式”。例如f(x) = sin(x) + x3。1775年,欧拉在《微分学原理》一书中又提出了函数的一个定义:“如果某些量以如下方式依赖于另一些量,即当后者变化时,前者本身也发生变化,则称前一些量是后一些量的函数。
” 19世纪的数学家开始对数学的各个分支作规范整理。维尔斯特拉斯(Karl Weierstrass)提出将微积分学建立在算术,而不是几何的基础上,因而更趋向于欧拉的定义。 通过扩展函数的定义,数学家能够对一些“奇怪”的数学对象进行研究,例如不可导的连续函数。这些函数曾经被认为只具有理论价值,迟至20世纪初时它们仍被视作“怪物”。稍后,人们发现这些函数在对如布朗运动之类的物理现象进行建模时有重要的作用。 到19世纪末,数学家开始尝试利用集合论来规范数学。他们试图将每一类数学对象定义为一个集合。狄利克雷(Johann Peter Gustav Lejeune Dirichlet)给出了现代正式的函数定义。狄利克雷的定义将函数视作数学关系的特例。然而对于实际应用的情况,现代定义和欧拉定义的区别可以忽略不计。
历史表明,重要数学概念对数学发展的作用是不可估量的,函数概念对数学发展的影响,可以说是贯穿古今、旷日持久、作用非凡,回顾函数概念的历史发展,看一看函数概念不断被精炼、深化、丰富的历史过程,是一件十分有益的事情,它不仅有助于我们提高对函数概念来龙去脉认识的清晰度,而且更能帮助我们领悟数学概念对数学发展,数学学习的巨大作用.(一)
从函数概念的发展看数学学科的发展特点
函数的概念最早产生于运动的研究.如伽利略是用文字语言来表述这些函数关系的.“从静止状态开始以定常加速度下降的物体,其经过的距离与所用时间的平方成正比”;“沿着同高度但不同坡度的倾斜平板下滑的物体,其下滑的时间与平板的长度成正比”;显然,只需引进适当的符号,上述的函数关系就可以明确的用数学形式表述: ; …以这些具体的函数为原型,17世纪的一些数学家通过弱抽象获得了如下的函数概念: “函数是这样一个量,它是从一些其它的量通过一系列代数运算而得到的.” 上述定义显然过于狭窄了,因为它事实上仅适用于代数函数的范围.因此,在其后的发展中,函数概念得到了进一步的扩展.随着数学研究的深入,人们逐渐接触到了一些超越函数,如对数函数,指数函数三角函数等,尽管这些函数已经超出了代数函数的范围,但是在一些数学家看来,两者区别仅仅在于超越函数重复代数函数的那些运算无限多次,从而人们又通过弱抽象提出了如下的函数概念: “函数是指由一个变量与一些常量,通过任何方式(有限的或无限的)形成的解析表达式.” 这一由欧拉给出的定义尽管仍然过于狭窄,在18世纪却曾长期占统治地位. 19世纪初,函数概念再次得到了扩展,函数的概念开始摆脱“解析表达式”,另外狄里克雷更提出了如下的函数概念: “如果对于给定区间上的每一个x值有唯一的一个y值同它对应,那么,y就是x的一个函数.” 最后,如果用任意的数学对象去取代具体的数量,并采用集合论的语言,则可以获得更为一般的“映射”概念: 如果在两个集合的元素之间存在有确定的对应关系,就称为是一个映射. 函数这个数学名词是莱布尼兹在1694年开始使用的,以描述曲线的一个相关量,如曲线的斜率或者曲线上的某一点。
莱布尼兹所指的函数现在被称作可导函数,数学家之外的普通人一般接触到的函数即属此类。对于可导函数可以讨论它的极限和导数。此两者描述了函数输出值的变化同输入值变化的关系,是微积分学的基础。 1718年,约翰·贝努里(en:Johann Bernoulli)把函数定义为“一个变量的函数是指由这个变量和常量以任何一种方式组成的一种量。”1748年,约翰·贝努里的学生欧拉(Leonhard Euler)在《无穷分析引论》一书中说:“一个变量的函数是由该变量和一些数或[常量]]以任何一种方式构成的解析表达式”。例如f(x) = sin(x) + x3。1775年,欧拉在《微分学原理》一书中又提出了函数的一个定义:“如果某些量以如下方式依赖于另一些量,即当后者变化时,前者本身也发生变化,则称前一些量是后一些量的函数。
” 19世纪的数学家开始对数学的各个分支作规范整理。维尔斯特拉斯(Karl Weierstrass)提出将微积分学建立在算术,而不是几何的基础上,因而更趋向于欧拉的定义。 通过扩展函数的定义,数学家能够对一些“奇怪”的数学对象进行研究,例如不可导的连续函数。这些函数曾经被认为只具有理论价值,迟至20世纪初时它们仍被视作“怪物”。稍后,人们发现这些函数在对如布朗运动之类的物理现象进行建模时有重要的作用。 到19世纪末,数学家开始尝试利用集合论来规范数学。他们试图将每一类数学对象定义为一个集合。狄利克雷(Johann Peter Gustav Lejeune Dirichlet)给出了现代正式的函数定义。狄利克雷的定义将函数视作数学关系的特例。然而对于实际应用的情况,现代定义和欧拉定义的区别可以忽略不计。
历史表明,重要数学概念对数学发展的作用是不可估量的,函数概念对数学发展的影响,可以说是贯穿古今、旷日持久、作用非凡,回顾函数概念的历史发展,看一看函数概念不断被精炼、深化、丰富的历史过程,是一件十分有益的事情,它不仅有助于我们提高对函数概念来龙去脉认识的清晰度,而且更能帮助我们领悟数学概念对数学发展,数学学习的巨大作用.(一)
数学专业有哪些优点
1、就业面较广 社会对数学人才的需求也是多方面、多层次的。无论是进行理论研究、科研数据分析、软件开发还是从事金融保险、国际经济与贸易、工商管理、通讯工程、建筑设计等行业,都离不开相关的数学专业知识。其应用面也极其广泛,具有扎实基础的数学人才既可以做职业数学家,又可以在各类学校做数学老师;还可以成为某种领域(如金融、统计)的数据分析师,也可以从事软件设计、工程计算、网络安全、国防科技等方面的技术工作。
2、“跨专业”方便 数学专业毕业生具有比较扎实的理论基础,只要再学习一些相关知识,他们可以转向很多理工、经济类专业,比如计算机、统计、金融、经济学等。数学专业毕业生在专业知识、逻辑性思维和创新能力上都有较大的优势,一般来说,跨专业考研或跨专业就业都不困难。
3、上升快、收入高 据统计,毕业后收入较高、工作相关度高、提升较快的专业主要集中在计算机、金融、信息安全、软件工程等相关行业领域。
而数学专业毕业生大多从事相关行业的技术岗位,如精算师、银行、证券业工作、程序员、数据分析师等。 OECD成员国对成年人知识技能的调查显示,缺少数学技能严重限制了人们获得更好的报酬和更好的工作。 在新兴市场国家,精通数学的人,收入平均比其他人高出40%。
以下为关联文档:
发展心理学简答题幼儿的语言发展有何特点3到4岁的幼儿由于神经系统发育不够完善,发音器官和听觉器官的调节、控制能力还相对较差,所以他们发出的有些语音不够准确和清晰。他们虽然掌握了一些常用词,但对词意的理解较肤...
求关于科学发展观的小论文800字左右科学发展观哲学思考与经济探索 综述:人类的历史是一个探求幸福的真谛的过程,个人见解以一种零散的组织方式存在于社会,但是对于一个整体,通过一种普遍认可的发展的思想指导人们...
大班幼儿语言发展的特点提高语言表达能力以及发展语言认知水平是大班幼儿教学的重要目标,本文分析了大班幼儿的语言发展特点,包括具备一定的语言学习综合能力及个性化特征明显等,同时探讨了大班幼儿的...
从发展的角度思考一下你如何在心仪的职场环境内扎根论文 800字提供一个脉络吧 学习(主要途径:看书,报班,拜师)a.工作中用到的基础知识及技能,各个专业自己补充一下;b.以后发展需要的储备,例如,社交礼仪,组织能力,统筹能力等等c.把握行业发展的趋势,...
英语教学论文从英语中汉语借词看中国英语的发展趋势中国英语的语言特征深受中国文化和汉语思维的影 响,表现在语音、词汇、句法 和篇章 四个层面因为语言的核心是语音和语法的结构模 式,而不是词汇,所以语言变异较多地反映在词汇...
谁有一篇关于从爵士乐看流行音乐的发展的论文啊!爵士乐以其独特的魅力赢得了广大 听众的喜爱,同时也得到了音乐领域各界人士的认可。爵士乐以布鲁斯(Blues)和拉格泰姆(Ragtime)为源头,经过整整一个世纪的发展,如今已是异彩纷呈、...
基于发展学生化学学科核心素养的化学教学研究l论文应该怎么写在现代高中教育体系中,化学课程教学是至关重要的一部分内容,在很大程度上能够起到提高学生化学能力以及学生化学知识水平。就现阶段我国的高中化学课程教学来说,为进一步提高学...
学前儿童语言发展的特点1. 出生后 发出叫喊的声音:饿了的时候,身上不舒服的时候。这种叫喊完全是由生理的需要引起的。 2. 约2-3个月 “牙牙学语”的声音:吃饱的时候,身上舒服的时候。能听到a—a、e—e...
儿童语言发展的特点一、19-21个月儿童语言发展的特点 1、语言理解方面 这一阶段,您的孩子将越来越“善解人意”,因为他能理解的词越来越多,可以说是“与日俱增”,每天都在增加词汇量。除了名词以外...