一、位置在学习位置时用数对确定点的位置,起初确定一点位置是根据规定和约定。由于在平面直角坐标系中,先画X轴,而X轴上的坐标表示列。先用小括号将两个数括起来,再用逗号将两个数隔开。括号里面的数由左至右为列数和行数。列数与行数必须是具体的数,而不能用字母如(X,5)表示,它表述一条横线,(5,Y)它表示一条竖线,都不能确定一个点。
这部分知识渗透数形结合的数学思想,可在方格纸上画一画。
二、分数乘法分数乘法意义:
1、分数乘整数是求几个相同加数的和的简便运算,与整数乘法的意义相同。
2、分数乘分数是求一个数的几分之几是多少。例:一时刷一面墙的1/4,1/5时刷一面墙的多少?求1/5的1/4是多少?解决的方法一:用一张纸表示一面墙,折一折,这就是利用了数形结合的数学思想。
解决的方法二:工作效率成*工作时间=工作总量分数乘法的算法:
1、分数与整数相乘,分子与整数相乘的积做分子,分母不变。
2、分数与分数相乘,用分子相乘的积做分子,分母相乘的积做分母。分数的化简:分子、分母同时除以它们的最大公因数。关于分数乘法的计算:可在乘的过程中约分,也可将积的分子分母约分,提倡在计算过程中约分,这样简便。
约分的书写格式:把两个可以约分的数先划去,分别在它们的上下方写出约分后的数。分数的基本性质:分子分母同时乘或者除以一个相同的数时(0除外),分数值不变。倒数的意义:乘积为1的两个数互为倒数。特别强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。求倒数的方法:
1、求分数的倒数是交换分子分母的位置。
2、求整数的倒数是把整数看做分母是1的分数,再交换分子分母的位置。1的倒数是它本身。因为1*1=10没有倒数。0乘任何数都得0=0*1,1/0(分母不能为0)
三、分数除法分数除法是分数乘法的逆运算,就是已知两个数的积与其中一个因数,求另一个因数的运算。除以一个数是乘这个数的倒数,除以几就是乘这个数的几分之一。分数除法的基本性质:强调0除外比:两个数相除也叫两个数的比。
比表示两个数的关系,可以写成比的形式,也可以用分数表示,但仍读几比几。注:10/2=5/1,表示比读5比1,19:2=5,是比值,比值是一个数,可以是整数,分数,也可以是小数。比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例:路程/速度=时间。化简比:
1、用比的前项和后项同时除以它们的最大公约数。
2、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
3、两个小数的比,向右移动小数点的位置。也是先化成整数比。在分数乘法的应用部分,提倡画线段图分析数量关系。在图上要标出已知量和所求问题。关键是找到单位“1”,画线段图,主要是求一个数的几分之几是多少?应用:求一个数比另一个数多几这类题:先求出(或少)几,再和单位“1”(即标准量作比较)。
(大数-小数)/比较标准(即单位“1”)画线段图:
(1)标出已知和未知。
(2)分析数量关系。
(3)找等量关系。
(4)列方程。注:两个量的关系画两条线段图,部分和整体的关系画一条线段图。连比如:3:4:5读作:3比4比5无论是折纸实验,还是画线段图,实际上都是图形语言揭示分数除法计算过程的几何意义。在学习这些知识,分数乘除法,比的知识,运用了类比的数学方法(相似与变式)。
另外数据简单,降低探究、理解算理难度,便于口算,整个推理过程处于学生思维能力的最近发展区内。比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。黄金分割点,最美的点。 A C B AC:AB=CB:AC主持站在舞台上,他站在舞台上的黄金分割点处效果最好。常用来做判断的:一个数除以小于1的数,商大于被除数。
一个数除以1,商等于被除数。一个数除以大于1的数,商小于被除数。
四、圆圆的面积推导,用逐渐逼近的转化思想。把一个圆等分(偶数份)成的份数越多,拼成的图像越接近长方形。体现化圆为方,化曲为直的思想,应用转化思想。化新为旧,化未知为已知,化复杂为简单,化抽象为具体。面积相同时,长方形的周长最长,正方形居中,圆周长最短。
周长一定时,圆面积最大,正方形居中,长方形面积最小