[数学教学之我见]数学离不开生活,生活中处处有数学。现代教育观指出:数学教学应从孩子已有的知识经验出发,让孩子亲身经历参与特定的教学活动,获得一些体验,并且通过自主探索、合作交流,将实际问题...+阅读
1.教师要写自己认为来有重要意义的教学经历或教学故事,即要有选择性,典型性,不要事无巨细都罗列进去,要围绕中心问题进行选择。并不是说所有的事件都可自以成为案例,要善于捕捉教学过程中的“亮点”。 2.应根据以往的经历撰写案例,尽量保持2113案例中资料的真实性,使读者有身临其境的感觉。可以到案例的主体即学生那是去询问、调查他们的真5261实感受。 3.教学案例与其它的教学作品有区别性。与教学论文相比,教学案例在文体和表达方式上以记录为目的,以记叙为主,兼有议论和说4102明;在思维方式上,是一个从具体到抽象的过程,通过对生动的教学“故事”的描述,通过对具体的学生、老师心理感受的描述,反思、总结1653教学的利弊得失。...
根据初三数学的函数知识写一篇论文文字不少于1500字急求
数学论文 相比初二而言,初三的数学更显逻辑性,前面所讲的知识往往就是后面学习的基础。如果对前面所学的内容不能及时掌握,就会造成知识脱节,跟不上集体学习的进程。在初三数学学习过程中我第一次接触到函数,对此也产生了浓厚的兴趣,下面就让我来谈一谈。 1.经验型理解 主要在于感受变化过程、“对应”现象;尝试探索变化规律的活动;经历研究函数基本性质的过程;尝试根据函数的基本特征做预测的活动。 为后续的函数学习打基础。函数学习的最基本内容:函数表明了变量之间的对应关系;三种基本的表达形式;基本特征;一些应用。 2.形式化理解 主要在于从事函数内容的实质性学习:包括理解函数的基本概念(自变量、定义域等),相关的性质;借助函数的知识和方法解决问题。
基本途径是从对具体的函数(一次、反比例、二次等)研究开始,深入到一般的层面。 3.结构化理解 主要在于了解不同函数之间的联系;函数与其他数学内容的实质性联系,进而构建函数在初中数学知识系统中的地位。 函数的基础知识在数学和相关学科中有广泛运用,初中函数也是对初中数学知识的总结和对高中数学知识的铺垫,因此初中函数是非常重要的。对于我们初中学生来说,学习的积极性主要取决于学习兴趣和克服困难的毅力。进入初三之后我们不能再凭借兴趣来学习了,无论是喜欢的或不喜欢的学科或章节我们都应该认真地学习,让我们一起面对初三,在学习生活中克服各种困难
数学小论文初二
2的学生数学论文:《勾股定理的证明方法探究》 勾股定理又叫毕氏定理:在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。 据考证,人类对这条定理的认识,少说也超过 4000 年!又据记载,现时世上一共有超过 300 个对这定理的证明! 勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若鹜,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。
这是任何定理无法比拟的。 勾股定理的证明:在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。 首先说明勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。 1.中国方法:画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。 左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是 a^2+b^2=c^2。 这就是我们几何教科书中所说明的方法。既直观又简单,任何人都看得懂。 2.希腊方法:直接在直角三角形三边上画正方形,如图。
容易看出, △ABA' ≌△AA'C 。 过C向A''B''引垂线,交AB于C',交A''B''于C''。 △ABA'与正方形ACDA'同底等高,前者面积为后者面积的一半,△AA''C与矩形AA''C''C'同底等高,前者的面积也是后者的一半。由△ABA'≌△AA''C,知正方形ACDA'的面积等于矩形AA''C''C'的面积。同理可得正方形BB'EC的面积等于矩形B''BC'C''的面积。 于是, S正方形AA''B''B=S正方形ACDA'+S正方形BB'EC, 即 a2+b2=c2。 至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。 这就是希腊古代数学家欧几里得在其《几何原本》中的证法。 以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念: ⑴ 全等形的面积相等; ⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。
这是完全可以接受的朴素观念,任何人都能理解。 我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法: 如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。 赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。 西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。
据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。 下面说明的是美国第二十任总统伽菲尔德对勾股定理的证明。 如图, S梯形ABCD= (a+b)2 = (a2+2ab+b2), ① 又S梯形ABCD=S△AED+S△EBC+S△CED = ab+ ba+ c2 = (2ab+c2)。 ② 比较以上二式,便得 a2+b2=c2。 这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。
在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。 如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则 △BCD∽△BAC,△CAD∽△BAC。 由△BCD∽△BAC可得BC2=BD ? BA, ① 由△CAD∽△BAC可得AC2=AD ? AB。 ② 我们发现,把①、②两式相加可得 BC2+AC2=AB(AD+BD), 而AD+BD=AB, 因此有 BC2+AC2=AB2,这就是 a2+b2=c2。 这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。 在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法: 设△ABC中,∠C=90°,由余弦定理 c2=a2+b2-2abcosC, 因为∠C=90°,所...
以下为关联文档:
如何开展集体备课之我见新课程改革在倡导学生合作学习的同时,也要求教师合作探究,形成研讨氛围,发挥教师团队合作精神,集思广益,取长补短。 1 明确集体备课的目标和意义 集体备课是借教师的集体的智慧碰...
小学数学教学毕业论文与如何让学生生活小学数学教学浅析怎样让小学数学教学走向生活化新《课程标准》中指出:“数学是对现实世界的一种思考、描述、刻画、解释、理解,数学是人们生活、劳动和学习必不可少的工具,它来源于生活,又服...
如何促进小学语文教学有效性论文众所周知,提高课堂教学的有效性,是每一位教师追求的永恒主题。课堂教学的有效性是一种过程,更是一种理念。它不仅关注知识的教育,更崇尚智慧的教育。审视我们当今的小学语文课堂...
如何在新形势下开展六五普法教育之我见近年来我国经济快速发展,使得人们在不断感受改革开放成果的同时,更加关注统计数据;各级政府在科学发展观的指导下,发挥地区优势、发展地方经济,更加注重用数据说话,科学决策;法制建...
如何提高师德修养之我见教师是学生的楷模,学习的榜样,教师要以身立教,为人师表。教育就是以心灵塑造心灵,以人格造就人格的神圣事业。孔子云:“其身正,毋令则行,其身不正,虽令毋从。”作为教师,榜样的力量是...
如何小学生提高数学解决问题的能力论文对于学生在应用题掌握较差的产生原因,归纳起来有:①审题不严,忽视了表明条件与条件、条件与问题的关系的词语;②对问题的要求不明确;③条件与条件之间的关系没有搞清楚;④条件与问...
如何改进思想品德课教学之我见随着新课程改革的全面铺开,对从事思想品德课教学的教师提出了新的要求,它要求我们对传统基础教育中的种种弊病进行彻底的变革,要求我们教师不仅做课程的实施者,更要做课程的研究...
如何有效进行口语交际教学论文小学如何有效进行口语交际教学论文小学,如何让小学语文口语交际教学生活化:口语交际九义务教育语文课程重要内容所确握口语交际目标内容研究口语交际教贯彻落实《语文课程标准》全...
小学数学教学论文浅谈在新课程下如何提高数学课堂教学的有效性小学数学教学论文浅谈在新课程下如何提高数学课堂教学的有效性,如何让小学数学课堂教学更扎实更有效:使学生会有理。但是、对教材加工。所以,学生常常感到这些学习内容与自己无...