[初二数学自变量函数]1.c 将坐标代入就可以了,前面的数是x,后面的是y 2.常量是( 30 ),其中自变量是( t ), ( u )是( t )的函数,当t=( 15 )时,u=0 这个考的是函数的一些个定义,仔细看看书中的定义。 3.y=11+x,...+阅读
为保证函数式有意义,或实际问题有意义,函数式中的自变量取值通常要受到一定的限
制,这就是函数自变量的取值范围.
函数自变量的取值范围是函数成立的先决条件,只有正确理解函数自变量的取值范围,我们才能正确地解决函数问题.
初中阶段确定函数自变量的取值范围大致可分为以下三种类型:
一、函数关系式中自变量的取值范围
在一般的函数关系中自变量的取值范围主要考虑以下四种情况:
⑴函数关系式为整式形式:自变量取值范围为任意实数;
⑵函数关系式为分式形式:分母≠0;
⑶函数关系式含算术平方根:被开方数≥0;
⑷函数关系式含0指数:底数≠0.
例1.在下列函数关系式中,自变量x的取值范围分别是什么?
⑴y=2x-5; ⑵y=; ⑶y=; ⑷y=; ⑸y=(x-3)0
解析:⑴为整式形式:x的取值范围为任意实数;
⑵为分式形式:分母2x+1≠0 ∴x≠- ∴x的取值范围为x≠-;
⑶含算术平方根:被开方数3x-4≥0 ∴x≥ ∴x的取值范围为x≥;
⑷既含分母、又含算术平方根,故 ∴x≥-2且x≠0 x的取值范围为:x≥-2且x≠0 ⑸含0指数,底数x-3≠0 ∴x≠3,x的取值范围为x≠3.
二、实际问题中自变量的取值范围.
在实际问题中确定自变量的取值范围,主要考虑两个因素:
⑴自变量自身表示的意义.如时间、用油量等不能为负数.
⑵问题中的限制条件.此时多用不等式或不等式组来确定自变量的取值范围.
三、几何图形中函数自变量的取值范围
几何问题中的函数关系式,除使函数式有意义外,还需考虑几何图形的构成条件及运动范围.特别要注意的是在三角形中“两边之和大于第三边”.
求采纳