三九宝宝网宝宝百科宝宝知识

数学基本思想有哪些

02月13日 编辑 39baobao.com

[数学学霸是怎样炼成的]我觉得呢首先你需要有一颗热爱数学的心把,也就是潜意识地告诉自己我很爱数学,数学也很爱我这种的,这个真的超级重要。 先了解学数学的好处可以锻炼自己的思维能力等等,在生活中...+阅读

高中数学基本数学思想 1.转化与化归思想:是把那些待解决或难解决的问题化归到已有知识范围内可解问题的一种重要的基本数学思想.这种化归应是等价转化,即要求转化过程中的前因后果应是充分必要的,这样才能保证转化后所得结果仍为原题的结果. 高中数学中新知识的学习过程,就是一个在已有知识和新概念的基础上进行化归的过程.因此,化归思想在数学中无处不在. 化归思想在解题教学中的的运用可概括为:化未知为已知,化难为易,化繁为简.从而达到知识迁移使问题获得解决.但若化归不当也可能使问题的解决陷入困境. 例证2.逻辑划分思想(即分类与整合思想):是当数学对象的本质属性在局部上有不同点而又不便化归为单一本质属性的问题解决时,而根据其不同点选择适当的划分标准分类求解,并综合得出答案的一种基本数学思想.但要注意按划分标准所分各类间应满足互相排斥,不重复,不遗漏,最简洁的要求. 在解题教学中常用的划分标准有:按定义划分;按公式或定理的适用范围划分;按运算法则的适用条件范围划分;按函数性质划分;按图形的位置和形状的变化划分;按结论可能出现的不同情况划分等.需说明的是: 有些问题既可用分类思想求解又可运用化归思想或数形结合思想等将其转化到一个新的知识环境中去考虑,而避免分类求解.运用分类思想的关键是寻找引起分类的原因和找准划分标准. 例证 3. 函数与方程思想(即联系思想或运动变化的思想):就是用运动和变化的观点去分析研究具体问题中的数量关系,抽象其数量特征,建立函数关系式,利用函数或方程有关知识解决问题的一种重要的基本数学思想. 4. 数形结合思想:将数学问题中抽象的数量关系表现为一定的几何图形的性质(或位置关系);或者把几何图形的性质(或位置关系)抽象为适当的数量关系,使抽象思维与形象思维结合起来,实现抽象的数量关系与直观的具体形象的联系和转化,从而使隐蔽的条件明朗化,是化难为易,探索解题思维途径的重要的基本数学思想. 5. 整体思想:处理数学问题的着眼点或在整体或在局部.它是从整体角度出发,分析条件与目标之间的结构关系,对应关系,相互联系及变化规律,从而找出最优解题途径的重要的数学思想.它是控制论,信息论,系统论中“整体—部分—整体”原则在数学中的体现.在解题中,为了便于掌握和运用整体思想,可将这一思想概括为:记住已知(用过哪些条件?还有哪些条件未用上?如何创造机会把未用上的条件用上?),想着目标(向着目标步步推理,必要时可利用图形标示出已知和求证);看联系,抓变化,或化归;或数形转换,寻求解答.一般来说,整体范围看得越大,解法可能越好. 在整体思想指导下,解题技巧只需记住已知,想着目标, 步步正确推理就够了.中学数学中还有一些数学思想,如:集合的思想; 补集思想; 归纳与递推思想; 对称思想; 逆反思想; 类比思想; 参变数思想 有限与无限的思想;特殊与一般的思想。它们大多是本文所述基本数学思想在一定知识环境中的具体体现.所以在中学数学中,只要掌握数学基础知识,把握代数,三角,立体几何,解析几何的每部分的知识点及联系,掌握几个常用的基本数学思想和将它们统一起来的整体思想,就定能找到解题途径.提高数学解题能力.数学解题中转化与化归思想的应用 数学活动的实质就是思维的转化过程,在解题中,要不断改变解题方向,从不同角度,不同的侧面去探讨问题的解法,寻求最佳方法,在转化过程中,应遵循三个原则:

1、熟悉化原则,即将陌生的问题转化为熟悉的问题;

2、简单化原则,即将复杂问题转化为简单问题;

3、直观化原则,即将抽象总是具体化。策略一:正向向逆向转化 一个命题的题设和结论是因果关系的辨证统一,解题时,如果从下面入手思维受阻,不妨从它的正面出发,逆向思维,往往会另有捷径。例1 :四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不共面的取法共有__________种。 A、150 B、147 C、144 D、141 分析:本题正面入手,情况复杂,若从反面去考虑,先求四点共面的取法总数再用补集思想,就简单多了。解:10个点中任取4个点取法有 种,其中面ABC内的6个点中任取4点都共面有 种,同理其余3个面内也有 种,又,每条棱与相对棱中点共面也有6种,各棱中点4点共面的有3种, 不共面取法有 种,应选(D)。策略二:局部向整体的转化 从局部入手,按部就班地分析问题,是常用思维方法,但对较复杂的数学问题却需要从总体上去把握事物,不纠缠细节,从系统中去分析问题,不单打独斗。 例2:一个四面体所有棱长都是 ,四个顶点在同一球面上,则此球表面积为( ) A、 B、 C、 D、 分析:若利用正四面体外接球的性质,构造直角三角形去求解,过程冗长,容易出错,但把正四面体补形成正方体,那么正四面体,正方体的中心与其外接球的球心共一点,因为正四面体棱长为 ,所以正方体棱长为1,从而外接球半径为 ,应选(A)。 策略三:未知向已知转化 又称类比转化,它是一种培养知识迁移能力的重要学习方法,解题中,若能抓住题目中已知关键信息,锁定相似性,巧...

以下为关联文档:

怎么从数学学渣变成数学学霸??数学是一门基础学科,对于广大中学生来说,数学水平的高低,直接影响到物理、化学等学科的学习成绩,数学的重要地位由此可见。 步骤/方法 深刻理解概念。概念是数学的基石,学习概念(...

学霸怎么学数学我和你一样,我的数学成绩也不好,当时我为了高考不让数学拉后腿,我是不断的摸索,不断的找适合自己的学习数学的方法,我也经常找数学老师帮忙,老师给了我好多学习方面的意见和指导,这...

七大数学世纪难题是什么千僖难题”之一: P (多项式算法)问题对NP (非多项式算法)问题 “千僖难题”之二: 霍奇(Hodge)猜想 “千僖难题”之三: 庞加莱(Poincare)猜想 “千僖难题”之四: 黎曼(Riemann)假设 “千僖...

数学活动 5以内数的多少1.初步感知5以内数与数之间多一少一的关系。 2.发展比较、概括能力。 教学准备:动物头饰:猫、狗、猪、熊、兔子;黑板画;点子卡片每人一套。 教学过程: 1.导入活动:拍手游戏,用动作...

数学把分数化成小数0.35=7/20 0.98=49/50 3.05=61/20 0.82=41/50 3.14=157/50 2.8=14/5 0.28=7/25 0.05=1/20 0.15=3/20 0.12=3/25 1.8=9/5 0.02=1/50 0.1=1/10 7.25=29/4 1.5=3/2 0.8=4/5 0.0...

七年级数学答对后说话算数!1.题写错,式中有X^6,是6次多项式。 只能这样:求当x=-2时, 多项式(a-4)x的三次方-x的六次方+x-b =(a-4)(-2)^3-(-2)^6+(-2)-b =-8a-b-34 2. 4-2X-2Y=4-2(X+Y)=4-2*3=-2 3. 射中(9)环...

四大数学思想是什么所谓数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。数学思想是对数学事实与理论经过概括后产生的本质认识;基本数学思想则是体现...

高一数学有哪些思想数学思想方法 数学思想是指人们对数学理论和内容的本质的认识,数学方法是数学思想的具体化形式,实际上两者的本质是相同的,差别只是站在不同的角度看问题。通常混称为“数学思...

高中数学的四大思想是什么数形结合思想数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维...

推荐阅读
图文推荐