[如何可以激发宝宝的兴趣和发现其天赋]此阶段的宝宝模仿能力登上了一个新的高峰,在这个时期,父母可以利用这一点 着重培养宝宝对于绘画等的艺术才能。当宝宝刚刚开始学习绘画时,妈妈可以先给宝宝准备一些蜡笔。首先...+阅读
数据挖掘(Data Mining),就是从存放在数据库,数据仓库或其他信息库中的大量的数据中获取有效的、新颖的、潜在有用的、最终可理解的模式的非平凡过程。 1)数据挖掘能做以下七种不同事情(分析方法): 数据挖掘· 分类 (Classification) · 估值(Estimation) · 预言(Prediction) · 相关性分组或关联规则(Affinity grouping or association rules) · 聚集(Clustering) · 描述和可视化(Description and Visualization) · 复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等) 2)数据挖掘分类 以上七种数据挖掘的分析方法可以分为两类:直接数据挖掘;间接数据挖掘 · 直接数据挖掘 目标是利用可用的数据建立一个模型,这个模型对剩余的数据,对一个特定的变量(可以理解成数据库中表的属性,即列)进行描述。
· 间接数据挖掘 目标中没有选出某一具体的变量,用模型进行描述;而是在所有的变量中建立起某种关系 。 · 分类、估值、预言属于直接数据挖掘;后三种属于间接数据挖掘 3)各种分析方法的简介 · 分类 (Classification) 首先从数据中选出已经分好类的训练集,在该训练集上运用数据挖掘分类的技术,建立分类模型,对于没有分类的数据进行分类。 例子: a. 信用卡申请者,分类为低、中、高风险 b. 故障诊断:中国宝钢集团与上海天律信息技术有限公司合作,采用数据挖掘技术对钢材生产的全流程进行质量监控和分析,构建故障地图,实时分析产品出现瑕疵的原因,有效提高了产品的优良率。 注意: 类的个数是确定的,预先定义好的 · 估值(Estimation) 估值与分类类似,不同之处在于,分类描述的是离散型变量的输出,而估值处理连续值的输出;分类 数据挖掘的类别是确定数目的,估值的量是不确定的。
例子: a. 根据购买模式,估计一个家庭的孩子个数 b. 根据购买模式,估计一个家庭的收入 c. 估计real estate的价值 一般来说,估值可以作为分类的前一步工作。给定一些输入数据,通过估值,得到未知的连续变量的值,然后,根据预先设定的阈值,进行分类。例如:银行对家庭贷款业务,运用估值,给各个客户记分(Score 0~1)。然后,根据阈值,将贷款级别分类。 · 预言(Prediction) 通常,预言是通过分类或估值起作用的,也就是说,通过分类或估值得出模型,该模型用于对未知变量的预言。从这种意义上说,预言其实没有必要分为一个单独的类。预言其目的是对未来未知变量的预测,这种预测是需要时间来验证的,即必须经过一定时间后,才知道预言准确性是多少。 例子: 海南航空引入领先的数据挖掘工具马克威分析系统,分析客流、燃油等变化趋势,以航线收益为主题进行数据挖掘,制定精细的销售策略,有效提高了企业收益。
· 相关性分组或关联规则(Affinity grouping or association rules) 决定哪些事情将一起发生。 例子: a. 超市中客户在购买A的同时,经常会购买B,即A =>B(关联规则) b. 客户在购买A后,隔一段时间,会购买B (序列分析) · 聚集(Clustering) 聚集是对记录分组,把相似的记录在一个聚集里。聚集和分类的区别是聚集不依赖于预先定义好的类,不需要训练集。 例子: a. 一些特定症状的聚集可能预示了一个特定的疾病 b. 租VCD类型不相似的客户聚集,可能暗示成员属于不同的亚文化群 聚集通常作为数据挖掘的第一步。例如,"哪一种类的促销对客户响应最好?",对于这一 类问题,首先对整个客户做聚集,将客户分组在各自的聚集里,然后对每个不同的聚集,回答问题,可能效果更好。
c. 中国移动采用先进的数据挖掘工具马克威分析系统,对用户wap上网的行为进行聚类分析,通过客户分群,进行精确营销。 · 描述和可视化(Des cription and Visualization) 来源:网界网论坛 是对数据挖掘结果的表示方式。
大数据之如何进行用户行为分析
而消费者们作为这场游戏中的弱者,不断地被这些真假价格战挑逗着和引导着。然而,在当今的商场上,还有另外一类企业不是通过简单粗暴的价格战,而是通过对数据的充分使用和挖掘而在商战中获胜的。 最典型的当属全球电子商务的创始者亚马逊(Amazon.com)了,从 1995 年首创网上售书开始,亚马逊以迅雷不及掩耳之势,彻底颠覆了从图书行业开始的很多行业的市场规则及竞争关系,10 年之内把很多像 Borders 以及 Barnes and Noble 这样的百年老店被逼到破产或濒临破产。亚马逊在利润并不丰厚的图书行业竞争中取胜的根本原因在于对数据的战略性认识和使用,在大家还都不太明白什么是电子商务时,亚马逊已经通过传统门店无法比拟的互联网手段,空前地获取了极其丰富的用户行为信息,并且进行深度分析与挖掘。
何为“用户行为信息”(User Behavior Information)呢?简单地说,就是用户在网站上发生的所有行为,如搜索、浏览、打分、点评、加入购物筐、取出购物筐、加入期待列表(Wish List)、购买、使用减价券和退货等;甚至包括在第三方网站上的相关行为,如比价、看相关评测、参与讨论、社交媒体上的交流、与好友互动等。 和门店通常能收集到的购买、退货、折扣、返券等和最终交易相关的信息相比,电子商务的突出特点就是可以收集到大量客户在购买前的行为信息,而不是像门店收集到的是交易信息。 在电商领域中,用户行为信息量之大令人难以想象,据专注于电商行业用户行为分析的公司的不完全统计,一个用户在选择一个产品之前,平均要浏览 5 个网站、36 个页面,在社会化媒体和搜索引擎上的交互行为也多达数十次。
如果把所有可以采集的数据整合并进行衍生,一个用户的购买可能会受数千个行为维度的影响。对于一个一天 PU 近百万的中型电商上,这代表着一天近 1TB 的活跃数据。而放到整个中国电商的角度来看,更意味着每天高达数千 TB 的活跃数据。 正是这些购买前的行为信息,可以深度地反映出潜在客户的购买心理和购买意向。例如,客户 A 连续浏览了 5 款电视机,其中 4 款来自国内品牌 S,1 款来自国外品牌 T;4 款为 LED 技术,1 款为 LCD 技术;5 款的价格分别为 4599 元、5199 元、5499 元、5999 元、7999 元;这些行为某种程度上反映了客户 A 对品牌认可度及倾向性,如偏向国产品牌、中等价位的 LED 电视。而客户 B 连续浏览了 6 款电视机,其中 2 款是国外品牌 T,2 款是另一国外品牌 V,2 款是国产品牌 S;4 款为 LED 技术,2 款为 LCD 技术;6 款的价格分别为 5999 元、7999 元、8300 元、9200 元、9999 元、11050 元;类似地,这些行为某种程度上反映了客户 B 对品牌认可度及倾向性,如偏向进口品牌、高价位的 LED 电视等。
亚马逊通过对这些行为信息的分析和理解,制定对客户的贴心服务及个性化推荐。例如:当客户浏览了多款电视机而没有做购买的行为时,在一定的周期内,把适合客户的品牌、价位和类型的另一款电视机促销的信息通过电子邮件主动发送给客户;再例如,当客户再一次回到网站,对电冰箱进行浏览行为时,可以在网页上给客户 A 推荐国产中等价位的冰箱,而对客户 B 推荐进口高档价位的商品。 这样的个性化推荐服务往往会起到非常好的效果,不仅可以提高客户购买的意愿,缩短购买的路径和时间,通常还可以在比较恰当的时机捕获客户的最佳购买冲动,也降低了传统的营销方式对客户的无端骚扰,还能提高用户体验,是一个一举多得的好手段。 纵观国内外成功的电商企业,对用户行为信息的分析和使用,无不在这个兵家必争之地做大量投入。
他们对数据战略性的高度认识和使用,非常值得国内的电商学习和借鉴。
大数据技术中关于用户行为分析方面的有哪些技术
做用户行为分析的基础是获得用户行为数据,例如用户页面停留时间、跳转来源等等。这些信息有些能直接拿到,有些是需要做一些计算才能拿到的。一般来说用户访问时的一些信息都是以日志的形式打到web容器的日志空间中去,这其中包含了最通用的一些访问信息以及一些自定义的日志打点。 题主提到了大数据技术中对用户行为进行分析,那么可以假定网站或者App的访问量是比较傲多的。由于系统流量比较大,计算维度又比较多,后续数据消费者的需求增长比较快,所以对计算分析平台有了一定的要求。具体表现为: 1.负载能力。流量增大以后带来的压力是多方面的,比如网络带宽的压力、计算复杂度带来的压力、存储上的压力等等。一般来说这些都是比较显而易见的,会对产生比较直接的影响,比如计算实时性下降、消息出现了堆积、OOM等等。
为了解决这一现象,一般来说会选择一些分布式的框架来解决这个问题,比如引入分布式计算框架storm、spark,分布式文件系统hdfs等。 2.实时性。在系统资源捉襟见肘时消息的实时性会立即受到严重影响,这使得部分算法失效(例如对计算和收集上来的数据进行行为分析后,反馈到推荐系统上,当整体响应时间过场时会严重影响推荐效果和准确度)。对于这个情况来说可能会选择storm这种具有高实时性的分布式流式计算框架来完成任务。 3.系统管理和平台化相关技术手段。在大数据情景下,企业内数据环境和应用环境都是比较复杂的,用户行为分析应用不是一成不变的,那么就要求用户行为分析这种多变的应用在复杂环境中能有效生存,这包括算法数据材料的获得、系统运维、系统任务调度、系统资源调度等等,相关的技术很多时候要求团队自研,但也有ganglia、yarn、mesos这类开源系统可以参考或者直接使用。
4.数据链路。企业技术环境一般来说是非常复杂的,一层一层交错在一起,远不是一句MVC三层架构能够概括得了的,为了避免消息流通呈复杂的网状结构,一般会考虑应用服务化、企业服务总线(ESB)及消息总线来做传输,有兴趣的话题主可以一下这几个方向的技术和开源工具。 5.应用快速生成工具。我个人认为在大数据环境下应用都摆脱不了一个快速开发的要求,用户行为分析也是如此,这时候要考虑对接一些开源的分布式数据分析算法库而不是通过自己去实现,比如像spark ml,mahout这类的库用得好能减少很多工作量。
以下为关联文档:
什么是TED演讲呢?TED有什么作用TED(指technology, entertainment, design在英语中的缩写,即技术、娱乐、设计)是美国的一家私有非营利机构,该机构以它组织的TED大会著称,这个会议的宗旨是“用思想的力量来改变...
求解!制定和确立语文教学目标其作用主要表现在哪些方面确立教学目标对于任何一节课都是十分重要的,因为它指出了教学的主攻方向,规定了一整节课的教学内容、重点难点、学习层次水平及教学的深广度,是教学活动的出发点和归宿,也是教学...
维脑路通的作用是什么维脑路通(Venorruton,Troxerutin,曲克芦丁)是一种临床常用药品。多年的临床实践证明,维脑路通有效、安全。但关于其不良反应的报告也有逐年增多的趋势。本文对此进行综合报道,供...
简述科学的本质和特点科学首先指对应于自然领域的知识,经扩展、引用至社会、思维等领域,如社会科学。它涵盖两方面含义: 1。致力于揭示自然真象,而对自然作理由充分的观察或研究。这一观察,通常指可通...
什么叫应用文?应用文的特点是什么应用文,就像我们说的书信,报告,假条、演讲稿等等!其特点是以说明为主要表达方式;以介绍知识为主要任务;以客观的态度说明事物.应用文的定义如下:1.写作目的明确2.语言表达规范3.格...
什么是用户行为数据在讨论什么是用户行为数据之前,我们先来简单看下什么是数据。 数据是信息,是从某个角度对某个事物的定量描述。数据无处不在,无穷无尽,但是我们却不是任意的漫无目的的收集。任...
什么是大数据大数据的核心价值是什么大数据(Big Data)是指“无法用现有的软件工具提取、存储、搜索、共享、分析和处理的海量的、复杂的数据集合。”业界通常用4个V(即Volume、Variety、Value、Velocity)来概括大数...
演讲的作用是什么第一,演讲有促进演讲者成长的作用。只有那些有志者和不畏艰苦的人,才能攀登高峰,并摘下桂冠戴在自己的头上。虽然戴在自己的头上仅仅是一瞬间,但可以想象,就在这前前后后,演讲家是...
数据库审计是什么数据库审计是什么,数据库审计系统的特点有哪些:一、数据库审计是什么? 数据库审计是对数据库访问行为进行监管的系统,一般采用旁路部署的方式,通过镜像或探针的方式采集所有数据...