正四面体的重心到四定点距离,就是这个正四面体外接球的半径!具体如下:
如图,ABCD为正四面体,G、H分别为正三角形BCD和正三角形ABD的中心,O为正四面体的中心,所以AG、CH分别垂直于 CF和AF。因为正四面体棱长为2,所以DE=CF=AF=根号下3,CG=AH=三分之二根号下3,FG=FH=三分之一根号下3,所以,在直角三角形CHF中,CH=根号下(CF的平方-FH的平方)=三分之二根号下6,又因为直角三角形CGO与直角三角形CHF相似,所以,OC/CG=CF/CH,这样可求得,外接球的半径OC=二分之根号下6。