[影响心理健康的因素有哪些]1、生物因素 像遗传、身体残疾、慢性疾病等都属于生物因素,这些都会影响到心理健康。有些朋友家族中有遗传精神病史,这样的话患精神类疾病的几率就会比其他人要高很多。而如果...+阅读
logistic回归与多重线性回归一样,在应用之前也是需要分析一下资料是否可以采用logistic回归模型。并不是说因变量是分类变量我就可以直接采用logistic回归,有些条件仍然是需要考虑的。 首要的条件应该是需要看一下自变量与因变量之间是什么样的一种关系。多重线性回归中,要求自变量与因变量符合线性关系。而logistic回归则不同,它要求的是自变量与logit(y)符合线性关系,所谓logit实际上就是ln(P/1-P)。
也就是说,自变量应与ln(P/1-P)呈线性关系。当然,这种情形主要针对多分类变量和连续变量。对于二分类变量就无所谓了,因为两点永远是一条直线。 这里举一个例子。某因素y与自变量x之间关系分析,y为二分类变量,x为四分类变量。如果x的四分类直接表示为1,2,3,4。则分析结果为p=0.07,显示对y的影响在0.05水准时无统计学意义,而如果将x作为虚拟变量,以1为参照,产生x2,x3,x4三个变量,重新分析,则结果显示:x2,x3,x4的p值分别为0.08,0.05和0.03。
也就是说,尽管2和1相比无统计学意义,但3和1相比,4和1相比,均有统计学意义。 为什么会产生如此结果?实际上如果仔细分析一下,就可以发现,因为x与logit(y)并不是呈线性关系。而是呈如下图的关系: 这就是导致上述差异的原因。从图中来看,x的4与1相差最大,其次是2,3与1相差最小。实际分析结果也是如此,上述分析中,x2,x3,x4产生的危险度分别为3.1,2.9,3.4。
因此,一开始x以1,2,3,4的形式直接与y进行分析,默认的是认为它们与logit(p)呈直线关系,而实际上并非如此,因此掩盖了部分信息,从而导致应有的差异没有被检验出来。而一旦转换为虚拟变量的形式,由于虚拟变量都是二分类的,我们不再需要考虑其与logit(p)的关系,因而显示出了更为精确的结果。 最后强调一下,如果你对自变量x与y的关系不清楚,在样本含量允许的条件下,最好转换为虚拟变量的形式,这样不至于出现太大的误差。
如果你不清楚应该如何探索他们的关系,也可以采用虚拟变量的形式,比如上述x,如果转换的虚拟变量x2,x3,x4他们的OR值呈直线关系,那x基本上可以直接以1,2,3,4的形式直接与y进行分析。而我们刚才也看到了,x2,x3,x4的危险度分别为3.1,2.9,3.4。并不呈直线关系,所以还是考虑以虚拟变量形式进行分析最好。 总之,虚拟变量在logistic回归分析中是非常有利的工具,善于利用可以帮助你探索出很多有用的信息。
统计的分析策略是一个探索的过程,只要留心,你就会发现在探索数据关系的过程中充满了乐趣,因为你能发现别人所发现不了的隐藏的信息。希望大家多学点统计分析策略,把统计作为一种艺术,在分析探索中找到乐趣。 样本量的估计可能是临床最头疼的一件事了,其实很多的临床研究事前是从来不考虑样本量的,至少我接触的临床研究大都如此。
他们大都是想到就开始做,但是事后他们会寻求研究中样本量的依据,尤其是在投文章被审稿人提问之后。可能很少有人想到研究之前还要考虑一下样本够不够的问题。其实这也难怪,临床有临床的特点,很多情况下是很难符合统计学要求的,尤其一些动物试验,可能真的做不了很多。这种情况下确实是很为难的。 本篇文章仅是从统计学角度说明logistic回归所需的样本量的大致估计,不涉及临床特殊问题。
其实不仅logistic回归,所有的研究一般都需要对样本量事前有一个估计,这样做的目的是为了尽可能地得出阳性结果。比如,你事前没有估计,假设你做了20例,发现是阴性结果。如果事前估计的话,可能会提示你需要30例或25例可能会得出阳性结果,那这时候你会不会后悔没有事前估计?当然,你可以补实验,但是不管从哪方面角度来讲,补做的实验跟一开始做得实验可能各种条件已经变化,如果你在杂志中说你的实验是补做的,那估计发表的可能性就不大了。
一般来说,简单的研究,比如组间比较,包括两组和多组比较,都有比较成熟的公式计算一下你到底需要多少例数。这些在多数的统计学教材和流行病学教材中都有提及。而对于较为复杂的研究,比如多重线性回归、logistic回归之类的,涉及多个因素。这种方法理论上也是有计算公式的,但是目前来讲,似乎尚无大家公认有效的公式,而且这些公式大都计算繁琐,因此,现实中很少有人对logistic回归等这样的分析方法采用计算的方法来估计样本量。
而更多地是采用经验法。 其实关于logistic回归的样本量在部分著作中也有提及,一般来讲,比较有把握的说法是:每个结局至少需要10例样品。这里说得是每个结局。例如,观察胃癌的危险因素,那就是说,胃癌是结局,不是你的总的例数,而是胃癌的例数就需要这么多,那总的例数当然更多。比如我有7个研究因素,那我就至少需要70例,如果你是1:1的研究,那总共就需要140例。
如果1:2甚至更高的,那就需要的更多了。 而且,样本量的大小也不能光看这一个,如果你的研究因素中出现多重共线性等问题,那可能需要更多的样本,如果你的因变量不是二分类,而是多分类,可能也需要更大的样本来保证你的结果的可靠性。 理论上来讲,logistic回归采用的是最大似然估计,这种估计方法有很多优点,然而,一个主要的缺点就...
以下为关联文档:
影响心理健康的内在因素有哪些顾名思义,内部因素是影响一个人心理健康状况的内在原因,是一个人自身所具有的一种内在和主观的因素,主要包括生物遗传因素和心理状态因素两大类。 1.生物遗传因素。生物遗传因...
影响学生心理健康的因素有哪些就当前大学生的具体现状而言,影响其心理健康的因素主要体现在以下几个方面: (一)环境变迁 心理学研究表明:个体所处的环境的巨大变迁也会使个体产生心理应激。 (二)学业期望 大学生...
影响学生心理健康因素1、家庭对于青少年心理健康的影响 家庭是学生的第一课堂,而家长是学生的启蒙教师。家长的受教育程度、素质品德、家庭背景以及教育孩子的方法等等对于学生的心理发展都有着最...
影响心理发展的因素有哪些结合实际情况谈谈如何促进心理的健康发首先,他是乐群的,与人相处不错,同时有自己的边界。人是社会动物,有良好的人际关系对我们应对挫折,释放压力很有帮助。与他人的关系怎样,有没有稳定的社交圈,也反映了一个人的人格是...
影响大学生心理健康的因素有影响大学生心理健康的因素很多,具体可以归纳为四个方面:社会因素、家庭环境、学校教育和学生自身。 1、社会因素。严峻的就业形势给大学生带来了新的压力,由于扩招,未来大学生就...
财务预测中的回归分析法是怎么一回事原理是什么怎样应用所谓回归分析法,是在掌握大量观察数据的基础上,利用数理统计方法建立因变量与自变量之间的回归关系函数表达式(称回归方程式)。回归分析中,当研究的因果关系只涉及因变量和一个自...
matlab多组回归分析matlab多组回归分析可以用 regress()回归分析函数或其他的拟合函数(lsqcurvefit、nlinfit等)来实现。由于你给的数据偏少,下面以你的数据为例,进行分析 y=[1 2 3 4 5 6 7 8]'; x1...
运用方差分析和回归分析可以求解哪些问题一、方差分析和回归分析的区别与联系?(以双变量为例) 联系: 1、概念上的相似性 回归分析是为了分析变量间的因果关系,研究自变量X取不同值时,因变量平均值Y的变化。运用回归分析方...
如何使用SPSS进行逐步回归分析逐步回归分析 在自变量很多时,其中有的因素可能对应变量的影响不是很大,而且x之间可能不完全相互独立的,可能有种种互作关系。在这种情况下可用逐步回归分析,进行x因子的筛选,这...