[初中数学模型思想有哪些]数学建模属于一门应用数学,学习这门课要求我们学会如何将实际问题经过分析、简化转化为一个数学问题,然后用适当的数学方法去解决。数学建模是一种数学的思考方法,是运用数学的...+阅读
初中数学教材中体现出的基本数学思想 数学思想方法是数学学科的精髓,是数学素养的重要内容之一,只有充分掌握领会,才能用效地应用知识,形成能力。那么,什么是数学思想呢?数学思想是指现实世界的空间形式和数量关系不反映到人的意识之中,经过思维活动而产生结果,是对数学事实与理论的本质认识。 初中数学整套教材涉及的数学思想三十多种,这里就几种主要的数学思想作一总结。
一、用字母表示数的思想,这是基本的数学思想之一 在代数第一册第一章“代数初步知识”中,主要体现了这种思想。例如: 设甲数为a,乙数为b,用代数式表示:
(1)甲乙两数的和的2倍:2(a+b)(2)甲数的1/3与乙数的1/2差:1/3a-1/2b
二、数形结合的思想 “数形结合”是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。实中数学教材中下列内容体现了这种思想。
1、数轴上的点与实数的一一对应的关系。
2、平面上的点与有序实数对的一一对应的关系。
3、函数式与图像之间的关系。
4、线段(角)的和、差、倍、分等问题,充分利用数来反映形。
5、解三角形,求角度和边长,引入了三角函数,这是用代数方法解决何问题。
6、“圆”这一章中,贺的定义,点与圆、直线与圆、圆与圆的位置关系等都是化为数量关系来处理的。
7、统计初步中统计的第二种方法是绘制统计图表,用这些图表的反映数据的分情况,发展趋势等。实际上就是通过“形”来反映数据扮布情况,发展趋势等。实际上就是通过“形”来反映数的特征,这是数形结合思想在实际中的直接应用。
三、转化思想 在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的问题化为本站的或易于解决的问题来解决,它是数学基本思想方法之一。下列内容体现了这种思想:
1、分式方程的求解是分式方程转化为前面学过的一元二次方程求解,这里把待解决的新问题化为本站的问题来求解,体现了转化思想。
2、解直角三角形;把非直角三形问题化为直角三角形问题;把实际问题转化为数学问题。
3、“圆”这一章中,证明圆周角定理进所做的分析:证明弦切角定理的思路:求两圆的切线长的问题。这些转化都是通过辅助线来完成的。
4、把三角形或多边形中的某种线段或面积问题化为相似比问题来解决。
四、分类思想 集合的分类,有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关生活经验等都是通过分类讨论的。
五、特殊与一般化思想 1.“圆”这一章中,证明圆周角定理和弦切角定理时用的是特殊到一般的方法,而相交弦定理及其推论则是一般到特殊的思想运用。 2.“整式乘除”这一章,首先人数和的运算特例中,抽象概括出幂的一般运算性质。例:103 *103 =(10*10*10)(10*10)=10*10*10*10=105 =103 + 2 a3 •a3 =a3 + 2 am •an am + n 乘法公式的推导则是采用一般到特殊的推导过程。
六、类比思想 1. 不等式的性质,一元一次不等式的解法等内容时多采取与等式的性质,一无一次方和的解法等做类比。 2. 通过有理数的相反数、绝对值、运算律等得到实灵敏的相反数、绝对值、运算律等知识。 3. 在二次根式加减的运算中,指出“合并同类二次根式与合并同类项”类似。因此,二次根式的加减可以对比整式的加减进行。 4. “角的度量、角的比较大小、角的和、差及平他线”,可与线段的相关知识进行类比;度、分、秒的运算可与时、分、秒的运算进行类比。 5. 相似多边形的性质和相似三角形的性质类比。
七、数式通性 用数的运算所具有的性质,去控索式的同类运算是否也具有这样的性质,如具有,叫数式通性,整式的乘除这一章中,是由数的性质推知式的性质的;由数的国减推知式的加减的。
八、同类合并思想 这一思想在“整式的加减”这一章中的具体体现是合并同类项。“根式”这一章中的合并同类根式。
九、无逼近思想 在无限不循环小数以及用有理数逼近表示无理数时,体现了无限逼近的思想。
十、对称变换思想 在根式乘法、根式除法、√a2 =a(a=0)等内容中,多次运用等价转化、对称变化,反用公式的
初中数学教学中如何渗透数学思想方法初探
杨燕 贵州省福泉市第三中学 550500 摘要:所谓数学思想,就是人们对数学知识的本质认识和对数学规律的正确理解,它直接支配着数学的实践活动。所谓数学方法,就是解决数学问题的根本程序,是数学思想的具体反映。数学思想是数学方法的灵魂,数学方法是数学思想的表现形式和得以实现的手段,人们通常称之为数学思想方法。 关键词:数学 教学方法 初探 《课程标准》把要求在初中数学教学中渗透的数学思想、方法划分为三个层次,即“了解”、“理解”和“会应用”。其中要求“了解”的方法有分类法、类比法、反证法等;要求“理解”的或“会应用”的方法有待定系数法、消元法、降次法、配方法、换元法、图象法等。教师在整个教学过程中,不仅应该使学生能够领悟到这些数学思想方法的应用,而且要激发学生学习数学思想方法的好奇心和求知欲,促其独立思考,不断追求新知,发现、提出、分析并创造性地解决问题。在教学中,要认真把握好“了解”、“理解”、“会应用”这三个层次的不同要求,要注意不能随意将“了解”的层次提高到“理解”的层次、把“理解”的层次提高到“会应用”的层次,不然的话,学生初次接触就会感到数学思想、方法抽象难懂、高深莫测,从而挫伤他们的信心。 关于初中数学思想和方法的内涵与外延,目前尚无确切的定义。其实,在初中数学中,许多数学思想和方法是一致的,两者之间很难分割。它们既相辅相成又相互蕴含,只是方法较具体,是实施有关思想的技术手段,而思想则是属于数学概念和思维方式一类的东西,比较抽象。因此,在初中数学教学中,加强学生对数学方法的理解和应用,以达到对数学思想的了解,是使数学思想与方法得到交融的有效方法。比如转化思想,可以说是贯穿于整个初中阶段的数学学习,具体表现为从未知到已知的转化、一般到特殊的转化、局部与整体的转化。课本中引入了许多数学方法,比如换元法、消元降次法、图象法、待定系数法、配方法等。在教学中,要通过对具体数学方法的学习,使学生逐步领悟内含于方法的数学思想;同时,数学思想的指导又深化了数学方法的运用。期刊文章分类查询,尽在期刊图书馆这样处置,使“方法”与“思想”相互结合,将创新思维和创新精神寓于教学之中,教学才能卓有成效。
一、渗透“方法”,了解“思想”。由于初中学生数学知识比较贫乏,抽象思维能力也较为薄弱,把数学思想、方法作为一门独立的课程还缺乏应有的基础,因而只能以数学知识为载体,把数学思想和方法的教学渗透到数学知识的教学中去。教师要把握好渗透的契机,重视数学概念、公式、定理、法则的提出过程,知识的形成、发展过程,解决问题和规律的探索过程,使学生在这些过程中展开思维,从而发展他们的科学精神和创新意识,形成、获取新知识,并得到运用新知识解决问题的能力。如果忽视或压缩了这些过程,一味灌输知识的结论,就必然失去渗透数学思想、方法的一次次良机。如初中代数课本第一册《有理数》这一章,与原来教材相比,它少了一节——“有理数大小的比较”,而它的要求则贯穿在整章之中。在数轴教学之后,就引出了“在数轴上表示的两个数,右边的数总比左边的数大”、“正数都大于0,负数都小于0,正数大于一切负数”。而两个负数比大小的全过程单独地放在绝对值教学之后解决。教师在教学中应把握住这个逐级渗透的原则,既使这一章节的知识重点突出、难点分散,又向学生渗透了形数结合的思想,学生易于接受。 在渗透数学思想方法的过程中,教师要精心设计、有机结合,要有意识地潜移默化地启发学生领悟蕴含于数学知识之中的种种数学思想方法,切忌生搬硬套、全盘托出、脱离实际等错误做法。比如,教学二次不等式解集时结合二次函数图象来理解和记忆,总结归纳出解集在“两根之间”、“两根之外”,利用形数结合方法,从而比较顺利地完成新旧知识的过渡。
二、训练“方法”,理解“思想”。数学思想的内容是相当丰富的,方法也有难有易,因此,必须分层次地进行渗透和教学。这就需要教师全面熟悉初中三个年级的教材,努力挖掘出教材中有利于进行数学思想、方法渗透的各种因素,对这些数学知识从数学思想方法的角度作认真分析,按照初中三个年级不同的年龄特征、知识掌握的程度、认知能力、理解能力和可接受性由浅入深、由易到难分层次地贯彻到教学中去。如在教学同底数幂的乘法时,引导学生先研究底数、指数为具体数的同底数幂的运算方法和运算结果,从而归纳出一般方法,在得出用a表示底数,用m、n表示指数的一般法则以后,再要求学生应用一般法则来指导具体的运算。在整个教学过程中,教师既分层次地渗透了归纳和演绎的数学方法又体现了由特殊到一般再由一般到特殊的数学思想,对学生养成良好的思维习惯起到了重要作用。
三、掌握“方法”,运用“思想”。数学知识要经过听讲、复习、做习题等环节才能掌握和巩固。数学思想、方法的形成同样有一个循序渐进的过程,只有经过反复训练才能使学生真正领会。另外,要让学生形成自觉运用数学思想方法的意识,必须让...
中学数学有哪些数学思想方法
1.函数思想: 把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法。 2.数形结合思想: 把代数和几何相结合,例如对几何问题用代数方法解答,对代数问题用几何方法解答,这种方法在解析几何里最常用。例如求根号((a-1)^2+(b-1)^2)+根号(a^2+(b-1)^2)+根号((a-1)^2+b^2)+根号(a^2+b^2)的最小值,就可以把它放在坐标系中,把它转化成一个点到(0,1)、(1,0)、(0,0)、(1,1)四点的距离,就可以求出它的最小值。 3.分类讨论思想: 当一个问题因为某种量的情况不同而有可能引起问题的结果不同时,需要对这个量的各种情况进行分类讨论。比如解不等式|a-1|>4的时候,就要讨论a的取值情况。 4.方程思想: 当一个问题可能与某个方程建立关联时,可以构造方程并对方程的性质进行研究以解决这个问题。
例如证明柯西不等式的时候,就可以把柯西不等式转化成一个二次方程的判别式
初中数学思想方法主要有哪些
'2.分类讨论思想所谓分类讨论是指对于复杂的对象,为了研究的需要.根据对象本质属性的相同点和差异性,将对象区分为不同种类,通过研究各类对象的性质,从而认识整体的性质的思想方式。在分类讨论中要注意标准的同一性.即划分始终是同一个标准、这个标准必须是科学合理的;分域的互斥性.即所分成的各类既要互不包含.义要使各类总和等于讨论的全集;分域的逐级性,有的问题分类后还可在每,类中丙继续分类。运用分类讨论思想指导数学教学,有利于学生归纳、总结所学的数学知识,使之系统化、条理化.并逐步形成一个完整的知识结构网络,这有利于学生严密、清晰、合理地探索解题思路,提高数学思维能力。在初中数学中需要分类讨沦的问题主要e68a843231313335323631343130323136353331333332636333表现个方而:(扮有的数学概念、定理的论证包含多种情况.这类问题需要分类讨论。
如平面儿何中二角形的分类、四边形的分类、角的分类、圆周角定理、圆幂定理、弦切角定理等的证明,都涉及到分类i寸论(约解含字毋参数或绝对值符号的为一程、不等式、讨论算术根、正比例和反比例的数中二次项系数、,与图象的开l:]方向等,由于这些参数的取位不同或要去掉绝对值符号就有不同的结果.这类问题需要分类讨论(3)有的数学问题.虽结论惟一但导致这结论的前提不尽相同.这类问题也要分类讨论3一效形结合思想所谓数形结合是指抽象的数学语言与形象直观的图形结合起来.从而实现由抽象向具体转化的一种思维方式。著名数学家华罗庚说过:数缺形时不直观,形少数时难人微有些数最关系.借助于图形的性质,可以使许多抽象的概念和复杂的关系直观化、形象化、简单化,而图形的一些性质.借助于数量的计算和分析.得以严谨化。
在初中阶段,数形结合的形可以是数轴、函数的图象和几何图形等等.它们都具有形象化的特点数形结合思想在初中数学中主要表现在以下两个方面;(l)以形助数,帮助学生深刻理解数学概念如教师可以用数轴上点和实数之间的对应关系来讲清相反数、绝对值的概念以及比较两个数大小的方法;运用函数图象的性质讨沦一元三次方程的根以及讨论一7乙一次小等式等等(2)以数助形,帮助学生简化解题方法。初中数学中还渗透了类比、归纳、联想等数学思想方法这些思想力一法之间,是相互渗透、互相促进的,在数学教学中要有机地结合起来
以下为关联文档:
初中数学和物理的全部定律数学:1过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接...
谈谈在初中数学教学中怎样渗透数学思想和数学方法所谓数学思想,就是人们对数学知识e68a843231313335323631343130323136353331333363353735的本质认识和对数学规律的正确理解,它直接支配着数学的实践活动.所谓数学方法,就是解...
初中全部地理要点展开全部初中地理知识复习提纲 1、地球的形状和大小 地球是一个两极部位略扁的不规则的球体,它的平均直径为6371米。 2、纬线与纬度 在地球仪上,顺着东西方向,环绕地球仪一周的...
求小学初中全部数学公式常用的数量关系式 1、每份数*份数=总数 总数÷每份数=份数 总数÷份数=每份数 2、1倍数*倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3、速度*时间=路程 路程÷速度...
初中人教版的全部数学公式每份数*份数=总数 总数÷每份数=份数 总数÷份数=每份数 1倍数*倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 速度*时间=路程 路程÷速度=时间 路程÷时间=速度 单价...
如何在初中几何教学中渗透数学思想如何在初中几何教学中渗透数学思想数学思想方法是将数学知识转化为数学能力的桥梁,是解决数学问题的学科核心。现实中许多学生和教师觉得数学是一门枯燥无味的学科,老师教得很...
求初中数学所有的思想方法在给个例题如数形结合思想分类试验法与数学实验,倒推法,递推法,构造法,调整法,赋值法,排序法,抽屉原理,极端原理,容斥原理,利用整数性质,利用对称性,利用周期性,利用任意性,想象力与创造力 初中数学中蕴含的数学思想方...
初中数学全部定理1.过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的...
如何把握初中数学新课改的思想和方法那么,如何在新课标中把握这些思想和方法呢? 一、了解课标。把握要求和方法所谓数学思想,就是对数学知识和方法的本质认识,是对数学规律的理性认识。所谓数学方法,就是解决数学问...