[如何进行有效的客户分析]客户是企业的利润来源,客户管理对企业来说,可以说是发展之本,其重要性不言而喻。不过,客户管理可是有窍门的。在此,我作一些粗浅的分析,以期达到抛砖引玉之效。 第一步,明辨老客户...+阅读
可以通过以下几种方法来获取:
(1)、Clickstream Data点击流数据
①、直接访问数量
②、访客来源
③、访客地理位置
④、点击流跟踪
(2)、Outcomes Data结果型数据
①、访客(初次访问数,访问总数,平均回访数,关注点)
②、页面浏览(平均浏览数,总PV ,访问超过一页的访客比)
③、时间(全局,人均)
④、关键行为(如:注册,购买)
⑤、转化率
(3)、Research Data研究性数据
①、客户研究
②、启发式评估,客户体验测试
③、客户属性(数据库分析)
④、客户期望分析(从数据到服务)
(4)、Competitive Data 竞争性数据
①、“面”数据测量(大众分析)
②、网络服务数据测量(行业分析)
③、搜索引擎测量(舆情分析)
3、数据分析技术
对于数据分析技术,我们有可以分为初级数据分析和高级数据分析2种:
(1)、初级数据分析
①、Click Density Analysis 点击密度分析
②、Visitor Primary Purpose 访客首要目的
③、Task Completion Rates 任务完成率
④、Segmented Visitor Trends 客户分层
⑤、Multichannel Impact Analysis 渠道分析
(2)、高级数据分析
①、客户价值组属性
②、客户特征组属性
③、数据估计值组合
④、数据预期值组合
⑤、聚类组合分析
⑥、客户深层次研究
4、跨渠道的数据交互思想
①、跨渠道数据交互一般服务或者营销为目的。
②、跨渠道数据交互必须客户为中心。
③、跨渠道数据交互能够给客户立体式体验,有效提升品牌体验。
5、基于数据的互动式业务规划
①、基于数据交互的业务规划对象一般是一个系列产品或服务链条,通常广泛应用于通信业,银行业,保险业,零售业等。
②、基于数据交互的业务规划必须以客户为中心,分析客户出现需求的各种时机,并智能匹配以产品或服务,其实现以数据挖掘为核心。
6、基于数据的互动式营销规划
基于数据的交互式营销主要指互动营销,核心思想为分析客户的特定时机需求,并根据该需求推荐相关产品或服务满足客户需要,广泛应用于各种行业。
基于数据交互的业务规划同样必须以客户为中心,分析客户出现需求的各种时机,并智能匹配以产品或服务,其实现同样以数据挖掘为核心。
7、数据预测
数据分析:对照A服务和B服务的使用记录,使用A服务的客户在1个月收益小于B服务,而3个月会产生收益大于B服务。
互动营销:建议需要1个月服务的客户使用B服务,建议需要3个月的客户使用A服务。
业务创新:面向需要两个月服务的客户开发非A非B的C类型服务。
说说数据挖掘在零售业的作用
介绍了数据挖掘技术在零售业的应用,并结合马克威分析系统介绍了常用的案例 数据挖掘在零售业中的应用摘要:本文首先系统的介绍了零售业的功能,定位及要解决的问题,然后介绍了数据挖掘的定义、算法及应用,最后结合“马克威分析系统”,利用数据挖掘技术,以案例的形式解决了零售业领域的几个典型应用。关键词:数据挖掘,关联分析,聚类,零售业 1 零售业定义:零售商业企业是指向批发商业企业或生产企业购进商品,再将商品直接出售给最终消费者的商业企业。其特征是: ① 销售对象是直接消费者,而不是那些进行转卖或生产加工的使用者。 ② 零售商业企业的交易次数颇繁,平均每次交易额较小。 ③ 零售商业企业是商品流通的最终环节。零售企业的交易活动一旦成功、便意味着商品脱离了流通领域而进入消费领域,从而实现了商品价值和使用价值。
④ 就商品而言,除了专业的特卖店,一般零售商所包含的商品品种巨大,零售商采取的商品销售方式很多:经销,代销,联销等。随着经济、技术的不断发展,零售业面临着重大变革:日益成熟的电子商务;与关键客户和供应商之间的联盟;供应链整合、协同作业;全球化等等。为了适应环境的快速变化,因此具有竞争优势的零售商不但要知道客户是谁,买了什么,还要能够了解最适合的采购方式等。信息技术的发展推动着传统商业的发展,利用现代信息技术,实现企业管理的自动化、现代化,充分把信息技术运用与经营中,以最低的成本、最优质的服务、最快速的管理反应进行运作。 2 数据挖掘技术数据挖掘(data mining,DM)是一个萃取(extracting)和展现(presenting)新知识的流程。
通过分析具体数据,发现确定有效的、新颖的、有潜在使用价值的、以往不为人知的、最终可理解的信息,为企业良好运营和决策部门做出重要决策提供帮助。数据挖掘涉及的学科领域和方法很多。根据挖掘任务分可分为分类或预测模型发现、数据总结、聚类、关联规则发现、序列模式发现、依赖关系或依赖模型发现、异常和趋势发现等等;根据挖掘方法可分为:机器学习方法、统计方法、神经网络方法和数据库方法。机器学习方法包括:归纳学习方法(决策树、规则归纳等)、基于范例学习、遗传算法等;统计方法包括:回归分析 (多元回归、自回归等)、判别分析(贝叶斯判别、费歇尔判别、非参数判别等)、聚类分析(系统聚类、动态聚类等)、探索性分析(主元分析法、相关分析法等)等;神经网络方法包括:前向神经网络(BP算法等)、自组织神经网络(自组织特征映射、竞争学习等)等;数据库方法主要包括多维数据分析(OLAP)方法。
DM在很多行业都可以有较好的应用。如:国外DM已广泛应用于银行金融、制造、保险、公共设施、政府、教育、远程通讯、软件开发等领域。据报导,DM的投资回报率有达400%甚至10倍的事例。 3 零售业中的数据挖掘通过条形码、编码系统、销售管理系统、客户资料管理及其它业务数据中,可以收集到关于商品销售、客户信息、货存单位及店铺信息等信息资料。数据从各种应用系统中采集,经分类整理,放到数据仓库里,允许高级管理人员、分析人员、采购人员、市场人员和广告客户访问,利用DM工具对这些数据进行分析,为他们提供高效的科学决策工具。如对商品进行购物篮分析,分析那些商品顾客最有希望一起购买。如被业界广为传诵的 “啤酒和尿布”案例就是通过数据挖掘技术找出人与物间规律的典型。
在零售业应用领域,利用数据挖掘技术在很多方面有卓越表现:
企业如何有效地进行数据挖掘和分析
经常听人提到数据分析,那么数据怎么去分析?简单来说,可能就是做一些数据做统计、可视化、文字结论等。但是相比来说,数据挖掘就相对来说比较低调一些,这是这种低调,反而意味着数据挖掘对研究人员的要求要更高一些。
数据分析人员需要理解业务的核心指标,通过数据分析工具(比如R/SAS/SQL,或者内部的数据平台)对业务数据进行建模和分析,为相关的业务指标提供基于数据的解决方案。所以,数据分析岗位要求具备扎实的统计学功底和对数据的敏感。数据挖掘人员需要研究数据,试验和选择合适的机器学习相关的算法模型对数据进行建模和分析,最后自己在实际系统中将算法模型进行高性能的工程实现。所以,数据挖掘岗位要求同时具备深厚的机器学习功底和扎实的编程能力。
数据分析与数据挖掘不是相互独立的。数据分析通常是直接从数据库取出已有信息,进行一些统计、
以下为关联文档:
如何与客户沟通案例分析和如何与客户沟通技巧前面的博士,来自伟大的管理科学国家,做了好多世界第一流的真功夫真道理真本事真博士水平的世界最高水平的管理科学的培训教材。企业的盈利,是有限的,其实,一定是有特别好的帮助和...
如何进行有效的数据分析首先,我们要明确数据分析的概念和含义,清楚地理解什么是数据分析; 什么是数据分析呢,浅层面讲就是通过数据,查找其中蕴含的能够反映现实状况的规律。 专业一点讲:数据分析就是适当...
如何运用EXCEL进行数据分析以office07版为例;新建并打开excel表格,如图 首先添加数据分析插件,点击左上角按钮,出现菜单页面,选中右下角“EXCEL选项”按钮,点击, 然后点击“加载项”选项,选中“分析工具库”,点...
如何进行招聘数据分析渠道效果1、 负责公司人力资源工作的规划,建立、执行招聘、培训、考勤、劳动纪律等人事程序或规章制度; 2、 负责制定和完善公司岗位编制,协调公司各部门有效的开发和利用人力,满足公司...
如何利用excel进行数据分析数据分析教程1:打开数据表格,这个案例中用的数据无特殊要求,只是一列数值就可以了。 数据分析教程2:选择“工具”——“数据分析”——“描述统计”后,出现属性设置框 注:本功能需...
如何在excel中统计数据进行数据分析方法/步骤 1 1,打开Excel2010,输入数据,准备进行描述统计; 2,点击菜单栏的“文件”中的“选项” 3,出现新的弹窗,点击“加载项”,在点击“转到”; 4,出现新的弹窗,将前面的“方框”都点...
如何进行大数据分析及处理1. 可视化分析。大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时...
如何使用网络舆情分析系统进行网络数据整理分析网络舆情分析系统主要是针对网络舆情、网络舆论等信息进行分析与统计,但随着互联网技术高度发展趋势,人人都是网络舆情信息、网络舆论的产生者和传递者,所以,有效做好互联网舆情...
举两个例子说明宜家是以客户为中心的楼主你好: 宜家的营销理念是“好的设计,低的价位”,但因为设计确实很人性化和时尚化,价格并不便宜,只是和合理而已。但好的设计应该说名不虚传。 进入选购区,就有一家专门设计的导...